Cuticular Wax Biosynthesis is Up-Regulated by the MYB94 Transcription Factor in Arabidopsis

被引:148
作者
Lee, Saet Buyl [1 ]
Suh, Mi Chung [1 ]
机构
[1] Chonnam Natl Univ, Dept Bioenergy Sci & Technol, Kwangju 500757, South Korea
基金
新加坡国家研究基金会;
关键词
Arabidopsis; Cuticular wax; MYB94; R2R3-type MYB transcription factor; Transcriptional regulation; LIPID TRANSFER PROTEIN; DROUGHT TOLERANCE; GENE-EXPRESSION; NUCLEAR-LOCALIZATION; ALKANE BIOSYNTHESIS; CUTICLE DEVELOPMENT; CELL EXPANSION; DOMAIN; ACCUMULATION; EXPORT;
D O I
10.1093/pcp/pcu142
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The aerial parts of all land plants are covered with hydrophobic cuticular wax layers that act as the first barrier against the environment. The MYB94 transcription factor gene is expressed in abundance in aerial organs and shows a higher expression in the stem epidermis than within the stem. When seedlings were subjected to various treatments, the expression of the MYB94 transcription factor gene was observed to increase approximately 9-fold under drought, 8-fold for ABA treatment and 4-fold for separate NaCl and mannitol treatments. MYB94 harbors the transcriptional activation domain at its C-terminus, and fluorescent signals from MYB94: enhanced yellow fluorescent protein (eYFP) were observed in the nucleus of tobacco epidermis and in transgenic Arabidopsis roots. The total wax loads increased by approximately 2-fold in the leaves of the MYB94-over-expressing (MYB94 OX) lines, as compared with those of the wild type (WT). MYB94 activates the expression of WSD1, KCS2/DAISY, CER2, FAR3 and ECR genes by binding directly to their gene promoters. An increase in the accumulation of cuticular wax was observed to reduce the rate of cuticular transpiration in the leaves of MYB94 OX lines, under drought stress conditions. Taken together, a R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.
引用
收藏
页码:48 / 60
页数:13
相关论文
共 57 条
[1]   Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling [J].
Abe, H ;
Urao, T ;
Ito, T ;
Seki, M ;
Shinozaki, K ;
Yamaguchi-Shinozaki, K .
PLANT CELL, 2003, 15 (01) :63-78
[2]   The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis [J].
Aharoni, A ;
Dixit, S ;
Jetter, R ;
Thoenes, E ;
van Arkel, G ;
Pereira, A .
PLANT CELL, 2004, 16 (09) :2463-2480
[3]   Solving the puzzles of cutin and suberin polymer biosynthesis [J].
Beisson, Fred ;
Li-Beisson, Yonghua ;
Pollard, Mike .
CURRENT OPINION IN PLANT BIOLOGY, 2012, 15 (03) :329-337
[4]   Arabidopsis cuticular waxes: Advances in synthesis, export and regulation [J].
Bernard, Amelie ;
Joubes, Jerome .
PROGRESS IN LIPID RESEARCH, 2013, 52 (01) :110-129
[5]   Reconstitution of Plant Alkane Biosynthesis in Yeast Demonstrates That Arabidopsis ECERIFERUM1 and ECERIFERUM3 Are Core Components of a Very-Long-Chain Alkane Synthesis Complex [J].
Bernard, Amelie ;
Domergue, Frederic ;
Pascal, Stephanie ;
Jetter, Reinhard ;
Renne, Charlotte ;
Faure, Jean-Denis ;
Haslam, Richard P. ;
Napier, Johnathan A. ;
Lessire, Rene ;
Joubes, Jerome .
PLANT CELL, 2012, 24 (07) :3106-3118
[6]   PUTATIVE NUCLEAR-LOCALIZATION SIGNALS (NLS) IN PROTEIN TRANSCRIPTION FACTORS [J].
BOULIKAS, T .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1994, 55 (01) :32-58
[7]   Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses [J].
Bourdenx, Brice ;
Bernard, Amelie ;
Domergue, Frederic ;
Pascal, Stephanie ;
Leger, Amandine ;
Roby, Dominique ;
Pervent, Marjorie ;
Vile, Denis ;
Haslam, Richard P. ;
Napier, Johnathan A. ;
Lessire, Rene ;
Joubes, Jerome .
PLANT PHYSIOLOGY, 2011, 156 (01) :29-45
[8]   REGULATION OF THE YEAST HO GENE [J].
BREEDEN, L ;
NASMYTH, K .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1985, 50 :643-650
[9]   WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis [J].
Broun, P ;
Poindexter, P ;
Osborne, E ;
Jiang, CZ ;
Riechmann, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4706-4711
[10]   Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco [J].
Cameron, KD ;
Teece, MA ;
Smart, LB .
PLANT PHYSIOLOGY, 2006, 140 (01) :176-183