Hamilton-Jacobi methods for vakonomic mechanics

被引:11
作者
Gomes, Diogo Aguiar [1 ]
机构
[1] Univ Tecn Lisboa, Dept Matemat, Inst Super Tecn, P-1049001 Lisbon, Portugal
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2007年 / 14卷 / 3-4期
关键词
mother theory; Hamilton-Jacobi equations; vakonomic mechanics;
D O I
10.1007/s00030-007-5012-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the theory of Aubry-Mather measures to Hamiltonian systems that arise in vakonomic mechanics and sub-Riemannian geometry. We use these measures to study the asymptotic behavior of (vakonomic) action-minimizing curves, and prove a bootstrapping result to study the partial regularity of solutions of convex, but not strictly convex, Hamilton-Jacobi equations.
引用
收藏
页码:233 / 257
页数:25
相关论文
共 39 条
[1]  
[Anonymous], J DIFFER GEOM
[2]  
[Anonymous], 1993, ENCY MATH SCI
[3]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[4]  
BACCIOTTI A, 1986, FONFAMENTI GEOMETRIC
[5]   Analysis of the basis of thermodynamic [J].
Caratheodory, C .
MATHEMATISCHE ANNALEN, 1909, 67 :355-386
[6]  
Chow W-L., 1939, MATH ANN, V117, P98, DOI [DOI 10.1007/BF01450011, 10.1007/BF01450011]
[7]   Lagrangian graphs, minimizing measures and Mane's critical values [J].
Contreras, G ;
Iturriaga, R ;
Paternain, GP ;
Paternain, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (05) :788-809
[8]   THE HAMILTON-JACOBI-BELLMAN EQUATION FOR TIME-OPTIMAL CONTROL [J].
EVANS, LC ;
JAMES, MR .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) :1477-1489
[9]  
EVANS LC, 1999, EFFECTIVE HAMILTONIA
[10]   Heteroclinic orbits and Peierls set [J].
Fathi, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (10) :1213-1216