Cyclic codes over a non-chain ring Re,q and their application to LCD codes

被引:16
作者
Islam, Habibul [1 ]
Martinez-Moro, Edgar [2 ]
Prakash, Om [1 ]
机构
[1] Indian Inst Technol Patna, Dept Math, Bihta, Bihar, India
[2] Univ Valladolid, Inst Math, Valladolid, Spain
关键词
Cyclic code; LCD code; Optimal code; MDS code; Self-dual code; Gray map; LINEAR CODES; DUAL CODES; Z(4);
D O I
10.1016/j.disc.2021.112545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field of order q, a prime power integer, such that q = et + 1 where t >= 1, e >= 2 are integers. In this paper, we study cyclic codes of length nover a non-chain ring R-e,R-q = F-q[u]/< u(e) - 1 >. We define a Gray map phi and obtain many maximum-distance-separable (MDS) and optimal F-q-linear codes from the Gray images of cyclic codes. Under certain conditions we determine linear complementary dual (LCD) codes of length n when gcd(n, q) not equal 1 and gcd(n, q) = 1, respectively. It is proved that a cyclic code C of length n is an LCD code if and only if its Gray image phi(C) is an LCD code of length en over F-q. Among others, we present the conditions for existence of free and non-free LCD codes. Moreover, we obtain many optimal LCD codes as the Gray images of non-free LCD codes over R-e,R-q. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 33 条
[1]   A mass formula and rank of Z4 cyclic codes of length 2e [J].
Abualrub, T ;
Ghrayeb, A ;
Oehmke, RH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) :3306-3312
[2]   Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2 [J].
Abualrub, Taher ;
Siap, Irfan .
DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) :273-287
[3]  
Bayram A., 2014, J. Algebra Comb. Discrete Appl, V1, P1, DOI [10.13069/jacodesmath.31486, DOI 10.13069/JACODESMATH.31486]
[4]  
Bhaintwal, 2017, INT J INF CODING, V4, P289
[5]   Do non-free LCD codes over finite commutative Frobenius rings exist? [J].
Bhowmick, Sanjit ;
Fotue-Tabue, Alexandre ;
Martinez-Moro, Edgar ;
Bandi, Ramakrishna ;
Bagchi, Satya .
DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (05) :825-840
[6]   Cyclic codes over Z4 of oddly even length [J].
Blackford, T .
DISCRETE APPLIED MATHEMATICS, 2003, 128 (01) :27-46
[7]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[8]  
Bosma W., 1995, HDB MAGMA FUNCTIONS
[9]   COMPLEMENTARY DUAL CODES FOR COUNTER-MEASURES TO SIDE-CHANNEL ATTACKS [J].
Carlet, Claude ;
Guilley, Sylvain .
ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) :131-150
[10]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744