The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51

被引:10
作者
Park, Jung Mi [1 ,2 ]
Yang, Seung Wook [1 ]
Zhuang, Wei [1 ]
Bera, Asim K. [3 ,4 ]
Liu, Yan [3 ,4 ]
Gurbani, Deepak [3 ,4 ]
von Hoyningen-Huene, Sergei J. [1 ]
Sakurada, Sadie Miki [1 ]
Gan, Haiyun [1 ]
Pruett-Miller, Shondra M. [1 ]
Westover, Kenneth D. [3 ,4 ]
Potts, Malia B. [1 ,2 ]
机构
[1] St Jude Childrens Res Hosp, Dept Cell & Mol Biol, 332 N Lauderdale St, Memphis, TN 38105 USA
[2] Amgen Res, Dept Oncol, Thousand Oaks, CA USA
[3] Univ Texas Southwestern Med Ctr Dallas, Dept Biochem, Dallas, TX USA
[4] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Dallas, TX USA
基金
美国国家卫生研究院;
关键词
CANCER; AKT; TUMORIGENESIS; AMPLIFICATION; ACTIVATION; MUTATIONS; IBRUTINIB; DOCKING; TARGET; REGION;
D O I
10.1371/journal.pbio.3001281
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nutrient-responsive protein kinases control the balance between anabolic growth and catabolic processes such as autophagy. Aberrant regulation of these kinases is a major cause of human disease. We report here that the vertebrate nonreceptor tyrosine kinase Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristylation sites (SRMS) inhibits autophagy and promotes growth in a nutrient-responsive manner. Under nutrient-replete conditions, SRMS phosphorylates the PHLPP scaffold FK506-binding protein 51 (FKBP51), disrupts the FKBP51-PHLPP complex, and promotes FKBP51 degradation through the ubiquitin-proteasome pathway. This prevents PHLPP-mediated dephosphorylation of AKT, causing sustained AKT activation that promotes growth and inhibits autophagy. SRMS is amplified and overexpressed in human cancers where it drives unrestrained AKT signaling in a kinase-dependent manner. SRMS kinase inhibition activates autophagy, inhibits cancer growth, and can be accomplished using the FDA-approved tyrosine kinase inhibitor ibrutinib. This illuminates SRMS as a targetable vulnerability in human cancers and as a new target for pharmacological induction of autophagy in vertebrates.
引用
收藏
页数:31
相关论文
共 67 条
[1]  
Agarwala R, 2018, Nucleic Acids Res., V46, pD8, DOI DOI 10.1093/NAR/GKV1290
[2]   Pink1 regulates FKBP5 interaction with AKT/PHLPP and protects neurons from neurotoxin stress induced by MPP+ [J].
Boonying, Wassamon ;
Joselin, Alvin ;
Huangt, En ;
Qu, Dianbo ;
Safarpour, Farzaneh ;
Iyirhiaro, Grace O. ;
Gonzalez, Yasmilde Rodriguez ;
Callaghan, Steve M. ;
Slack, Ruth S. ;
Figeys, Daniel ;
Chung, Young-Hwa ;
Park, David S. .
JOURNAL OF NEUROCHEMISTRY, 2019, 150 (03) :312-329
[3]   Bruton Tyrosine Kinase (BTK) and Its Role in B-cell Malignancy [J].
Buggy, Joseph J. ;
Elias, Laurence .
INTERNATIONAL REVIEWS OF IMMUNOLOGY, 2012, 31 (02) :119-132
[4]   Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation [J].
Buhimschi, Alexandru D. ;
Armstrong, Haley A. ;
Toure, Momar ;
Jaime-Figueroa, Saul ;
Chen, Timothy L. ;
Lehman, Amy M. ;
Woyach, Jennifer A. ;
Johnson, Amy J. ;
Byrd, John C. ;
Crews, Craig M. .
BIOCHEMISTRY, 2018, 57 (26) :3564-3575
[5]   Three-year follow-up of treatment-naive and previously treated patients with CLL and SLL receiving single-agent ibrutinib [J].
Byrd, John C. ;
Furman, Richard R. ;
Coutre, Steven E. ;
Burger, Jan A. ;
Blum, Kristie A. ;
Coleman, Morton ;
Wierda, William G. ;
Jones, Jeffrey A. ;
Zhao, Weiqiang ;
Heerema, Nyla A. ;
Johnson, Amy J. ;
Shaw, Yun ;
Bilotti, Elizabeth ;
Zhou, Cathy ;
James, Danelle F. ;
O'Brien, Susan .
BLOOD, 2015, 125 (16) :2497-2506
[6]   Spatial regulation of receptor tyrosine kinases in development and cancer [J].
Casaletto, Jessica B. ;
McClatchey, Andrea I. .
NATURE REVIEWS CANCER, 2012, 12 (06) :386-399
[7]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[8]   CRIS.py: A Versatile and High-throughput Analysis Program for CRISPR-based Genome Editing [J].
Connelly, Jon P. ;
Pruett-Miller, Shondra M. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups [J].
Curtis, Christina ;
Shah, Sohrab P. ;
Chin, Suet-Feung ;
Turashvili, Gulisa ;
Rueda, Oscar M. ;
Dunning, Mark J. ;
Speed, Doug ;
Lynch, Andy G. ;
Samarajiwa, Shamith ;
Yuan, Yinyin ;
Graef, Stefan ;
Ha, Gavin ;
Haffari, Gholamreza ;
Bashashati, Ali ;
Russell, Roslin ;
McKinney, Steven ;
Langerod, Anita ;
Green, Andrew ;
Provenzano, Elena ;
Wishart, Gordon ;
Pinder, Sarah ;
Watson, Peter ;
Markowetz, Florian ;
Murphy, Leigh ;
Ellis, Ian ;
Purushotham, Arnie ;
Borresen-Dale, Anne-Lise ;
Brenton, James D. ;
Tavare, Simon ;
Caldas, Carlos ;
Aparicio, Samuel .
NATURE, 2012, 486 (7403) :346-352
[10]   Amelioration of age-related brain function decline by Bruton's tyrosine kinase inhibition [J].
Ekpenyong-Akiba, Akang E. ;
Poblocka, Marta ;
Althubiti, Mohammad ;
Rada, Miran ;
Jurk, Diana ;
Germano, Sandra ;
Kocsis-Fodor, Gabriella ;
Shi, Yu ;
Canales, Juan J. ;
Macip, Salvador .
AGING CELL, 2020, 19 (01)