Adiabatic cluster-state quantum computing

被引:21
作者
Bacon, Dave [1 ,2 ]
Flammia, Steven T. [3 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
[2] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[3] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 03期
基金
美国国家科学基金会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevA.82.030303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Models of quantum computation (QC) are important because they change the physical requirements for achieving universal QC. For example, one-way QC requires the preparation of an entangled "cluster" state, followed by adaptive measurement on this state, a set of requirements which is different from the standard quantum-circuit model. Here we introduce a model based on one-way QC but without measurements (except for the final readout), instead using adiabatic deformation of a Hamiltonian whose initial ground state is the cluster state. Our results could help increase the feasibility of adiabatic schemes by using tools from one-way QC.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Adiabatic quantum computation is equivalent to standard quantum computation [J].
Aharonov, D ;
van Dam, W ;
Kempe, J ;
Landau, Z ;
Lloyd, S ;
Regev, O .
45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, :42-51
[2]   Computation by measurements: A unifying picture [J].
Aliferis, P ;
Leung, DW .
PHYSICAL REVIEW A, 2004, 70 (06) :062314-1
[3]  
[Anonymous], UNPUB
[4]   Adiabatic Gate Teleportation [J].
Bacon, Dave ;
Flammia, Steven T. .
PHYSICAL REVIEW LETTERS, 2009, 103 (12)
[5]   Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation [J].
Bartlett, Stephen D. ;
Rudolph, Terry .
PHYSICAL REVIEW A, 2006, 74 (04)
[6]   Unified derivations of measurement-based schemes for quantum computation [J].
Childs, AM ;
Leung, DW ;
Nielsen, MA .
PHYSICAL REVIEW A, 2005, 71 (03)
[7]  
Gottesman D. E., 1997, Ph.D. dissertation
[8]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30
[9]   Noncyclic geometric changes of quantum states [J].
Kult, David ;
Aberg, Johan ;
Sjoqvist, Erik .
PHYSICAL REVIEW A, 2006, 74 (02)
[10]   Cluster-state quantum computation [J].
Nielsen, MA .
REPORTS ON MATHEMATICAL PHYSICS, 2006, 57 (01) :147-161