COLREGs-compliant multiship collision avoidance based on deep reinforcement learning

被引:172
作者
Zhao, Luman [1 ]
Roh, Myung-Il [2 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Ocean Operat & Civil Engn, Trondheim, Norway
[2] Seoul Natl Univ, Res Inst Marine Syst Engn, Dept Naval Architecture & Ocean Engn, 1 Gwanak Ro, Seoul 08826, South Korea
关键词
Multiship collision avoidance; Autonomous ship; COLREGs; Deep reinforcement learning; Deep neural network; TRACKING;
D O I
10.1016/j.oceaneng.2019.106436
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Developing a high-level autonomous collision avoidance system for ships that can operate in an unstructured and unpredictable environment is challenging. Particularly in congested sea areas, each ship should make decisions continuously to avoid collisions with other ships in a busy and complex waterway. Furthermore, recent reports indicate that a large number of marine collision accidents are caused by or are related to human decision failures concerning a lack of situational awareness and failure to comply with the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). In this study, we propose an efficient method to overcome multiship collision avoidance problems based on the Deep Reinforcement Learning (DRL) algorithm by expanding our previous study (Zhao et al., 2019). The proposed method directly maps the states of encountered ships to an ownship's steering commands in terms of rudder angle using the Deep Neural Network (DNN). This DNN is trained over multiple ships in rich encountering situations using the policy-gradient based DRL algorithm. To address multiple encountered ships, we classify them into four regions based on COLREGs, and consider only the nearest ship in each region. We validate the proposed collision avoidance method in a variety of simulated scenarios with thorough performance evaluations, and demonstrate that the final DRL controller can obtain time efficient and collision-free paths for multiple ships. Simulation results indicate that multiple ships can avoid collisions with each other while following their own predefined paths simultaneously. In addition, the proposed approach demonstrates its excellent adaptability to unknown complex environments with various encountered ships.
引用
收藏
页数:15
相关论文
共 27 条
[1]   Nonlinear Model Predictive Control for trajectory tracking and collision avoidance of underactuated vessels with disturbances [J].
Abdelaal, Mohamed ;
Fraenzle, Martin ;
Hahn, Axel .
OCEAN ENGINEERING, 2018, 160 :168-180
[2]   Reinforcement Learning Based Obstacle Avoidance for Autonomous Underwater Vehicle [J].
Bhopale, Prashant ;
Kazi, Faruk ;
Singh, Navdeep .
JOURNAL OF MARINE SCIENCE AND APPLICATION, 2019, 18 (02) :228-238
[3]  
Blanke M, 2002, IFAC P SER, P1
[4]  
Chae H, 2017, IEEE INT C INTELL TR
[5]   Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels [J].
Cheng, Yin ;
Zhang, Weidong .
NEUROCOMPUTING, 2018, 272 :63-73
[6]  
Cui Y., 2019, P 2019 IEEE RSJ INT, V11, P4
[7]  
Eriksen BOH, 2017, 2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), P766, DOI 10.1109/CCTA.2017.8062554
[8]  
Everett M., 2018, P 2018 IEEE RSJ INT, V10, P1
[9]  
Fossen TI, 2011, Handbook of marine craft hydrodynamics and motion control, DOI [10.1002/9781119994138, DOI 10.1002/9781119994138]
[10]   Quantitative analysis of COLREG rules and seamanship for autonomous collision avoidance at open sea [J].
He, Yixiong ;
Jin, Yi ;
Huang, Liwen ;
Xiong, Yong ;
Chen, Pengfei ;
Mou, Junmin .
OCEAN ENGINEERING, 2017, 140 :281-291