Long Term Motion Prediction Using Keyposes

被引:2
|
作者
Kiciroglu, Sena [1 ]
Wang, Wei [1 ,2 ]
Salzmann, Mathieu [1 ,3 ]
Fua, Pascal [1 ]
机构
[1] Ecole Polytech Fed Lausanne, CVLab, Lausanne, Switzerland
[2] Univ Trento, MHUG, Trento, Italy
[3] Clearspace, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1109/3DV57658.2022.00014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Long term human motion prediction is essential in safety-critical applications such as human-robot interaction and autonomous driving. In this paper we show that to achieve long term forecasting, predicting human pose at every time instant is unnecessary. Instead, it is more effective to predict a few keyposes and approximate intermediate ones by interpolating the keyposes. We demonstrate that our approach enables us to predict realistic motions for up to 5 seconds in the future, which is far longer than the typical 1 second encountered in the literature. Furthermore, because we model future keyposes probabilistically, we can generate multiple plausible future motions by sampling at inference time. Over this extended time period, our predictions are more realistic, more diverse and better preserve the motion dynamics than those stateof-the-art methods yield.
引用
收藏
页码:12 / 21
页数:10
相关论文
共 50 条
  • [1] Motion estimation using long term motion vector prediction
    Ismaeil, IR
    Docef, A
    Kossentini, F
    Ward, R
    DCC '99 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1999, : 531 - 531
  • [2] Motion estimation using long term motion vector prediction
    Ismaeil, Ismaeil R.
    Docef, Alen
    Kossentini, Faouzi
    Ward, Rahab
    Data Compression Conference Proceedings, 1999,
  • [3] LONG-TERM PREDICTION OF SATELLITE MOTION USING AN AVERAGING METHOD
    GRIMARD, M
    RECHERCHE AEROSPATIALE, 1985, (06): : 341 - 352
  • [4] Long-term Vehicle Motion Prediction
    Hermes, Christoph
    Woehler, Christian
    Schenk, Konrad
    Kummert, Franz
    2009 IEEE INTELLIGENT VEHICLES SYMPOSIUM, VOLS 1 AND 2, 2009, : 652 - 657
  • [5] LTN: Long-Term Network for Long-Term Motion Prediction
    Wang, YingQiao
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1845 - 1852
  • [6] Long-term Prediction of Motion Trajectories Using Path Homology Clusters
    Carvalho, J. Frederic
    Vejderno-Johansson, Mikael
    Pokorny, Florian T.
    Kragic, Danica
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 765 - 772
  • [7] PROBLEM OF LONG-TERM PREDICTION OF FLUID MOTION
    ROBINSON, GD
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1972, 53 (01) : 71 - &
  • [8] Long-term prediction of polar motion using a combined SSA and ARMA model
    Shen, Yi
    Guo, Jinyun
    Liu, Xin
    Kong, Qiaoli
    Guo, Linxi
    Li, Wang
    JOURNAL OF GEODESY, 2018, 92 (03) : 333 - 343
  • [9] Long-term prediction of polar motion using a combined SSA and ARMA model
    Yi Shen
    Jinyun Guo
    Xin Liu
    Qiaoli Kong
    Linxi Guo
    Wang Li
    Journal of Geodesy, 2018, 92 : 333 - 343
  • [10] Long-term polar motion prediction using normal time–frequency transform
    Xiaoqing Su
    Lintao Liu
    Hsu Houtse
    Guocheng Wang
    Journal of Geodesy, 2014, 88 : 145 - 155