Assembly and Comparison of Plasma Membrane SNARE Acceptor Complexes

被引:18
|
作者
Kreutzberger, Alex J. B. [1 ,2 ]
Liang, Binyong [1 ,2 ]
Kiessling, Volker [1 ,2 ]
Tamm, Lukas K. [1 ,2 ]
机构
[1] Univ Virginia, Ctr Membrane & Cell Physiol, Charlottesville, VA USA
[2] Univ Virginia, Dept Mol Physiol & Biol Phys, Charlottesville, VA USA
基金
美国国家卫生研究院;
关键词
NEUROTRANSMITTER RELEASE; PLANAR BILAYERS; FUSION; VESICLES; RECONSTITUTION; INTERMEDIATE; PROTEINS; SNAP-25;
D O I
10.1016/j.bpj.2016.04.011
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Neuronal exocytotic membrane fusion occurs on a fast timescale and is dependent on interactions between the vesicle SNARE synaptobrevin-2 and the plasma membrane SNAREs syntaxin-1a and SNAP-25 with a 1:1:1 stoichiometry. Reproducing fast fusion rates as observed in cells by reconstitution in vitro has been hindered by the spontaneous assembly of a 2:1 syntaxin-1a:SNAP-25 complex on target membranes that kinetically alters the binding of synaptobrevin-2. Previously, an artificial SNARE acceptor complex consisting of 1:1:1 syntaxin-1a(residues 183-288):SNAP-25:syb(residues 49-96) was found to greatly accelerate the rates of lipid mixing of reconstituted target and vesicle SNARE proteoliposomes. Here we present two (to our knowledge) new procedures to assemble membrane-bound 1:1 SNARE acceptor complexes that produce fast and efficient fusion without the need of the syb(49-96) peptide. In the first procedure, syntaxin-1a is purified in a strictly monomeric form and subsequently assembled with SNAP-25 in detergent with the correct 1:1 stoichiometry. In the second procedure, monomeric syntaxin-1a and dodecylated (d-)SNAP-25 are separately reconstituted into proteoliposomes and subsequently assembled in the plane of merged target lipid bilayers. Examining single particle fusion between synaptobrevin-2 proteoliposomes and planar-supported bilayers containing the two different SNARE acceptor complexes revealed similar fast rates of fusion. Changing the stoichiometry of syntaxin-1a and d-SNAP-25 in the target bilayer had significant effects on docking, but little effect on the rates of synaptobrevin-2 proteoliposome fusion.
引用
收藏
页码:2147 / 2150
页数:4
相关论文
共 50 条
  • [21] Three SNARE complexes cooperate to mediate membrane fusion
    Hua, YY
    Scheller, RH
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (14) : 8065 - 8070
  • [22] Functionally distinct SNARE motifs of SNAP25 cooperate in SNARE assembly and membrane fusion
    Kraichely, Katelyn N.
    Sandall, Connor R.
    Liang, Binyong
    Kiessling, Volker
    Tamm, Lukas K.
    BIOPHYSICAL JOURNAL, 2025, 124 (04) : 637 - 650
  • [23] Membrane-directed molecular assembly of the neuronal SNARE complex
    Cho, Won Jin
    Lee, Jin-Sook
    Zhang, Lei
    Ren, Gang
    Shin, Leah
    Manke, Charles W.
    Potoff, Jeffrey
    Kotaria, Nato
    Zhvania, Mzia G.
    Jena, Bhanu P.
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2011, 15 (01) : 31 - 37
  • [24] How SNARE Assembly and Folding may Drive Membrane Fusion
    Tamm, Lukas K.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 637A - 637A
  • [25] The SNARE membrane fusion machinery at the plasma membrane of the retinal pigment epithelium
    Low, SH
    Marmorstein, LY
    Miura, M
    Li, X
    Marmorstein, AD
    Low, SH
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 : 488A - 488A
  • [26] The assembly of membrane proteins into complexes
    Daley, Daniel O.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (04) : 420 - 424
  • [27] ASSEMBLY OF INNER MEMBRANE COMPLEXES
    TZAGOLOFF, A
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1974, 227 (FEB18) : 521 - 526
  • [28] Epigallocatechin gallate inhibits SNARE-dependent membrane fusion by blocking trans-SNARE assembly
    Zhu, Min
    Xu, Han
    Jiang, Yuting
    Yu, Haijia
    Liu, Yinghui
    FEBS OPEN BIO, 2022, 12 (12): : 2111 - 2121
  • [29] Cooperativity of SNARE Complexes in Membrane Fusion: Mechanisms of SNARE Cluster-Mediated Docking and Fusion
    Warner, Jason M.
    Stratton, Benjamin S.
    Karatekin, Erdem
    O'Shaughnessy, Ben
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 498A - 499A