A Novel Image Feature for the Remaining Useful Lifetime Prediction of Bearings Based on Continuous Wavelet Transform and Convolutional Neural Network

被引:146
|
作者
Yoo, Youngji [1 ]
Baek, Jun-Geol [1 ]
机构
[1] Korea Univ, Dept Ind Management Engn, Seoul 02841, South Korea
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 07期
基金
新加坡国家研究基金会;
关键词
continuous wavelet transform; convolutional neural network; bearings; remaining useful lifetime; prognostics and health management; health indicator; FAULT-DIAGNOSIS; HEALTH; MACHINE; DECOMPOSITION; DEGRADATION;
D O I
10.3390/app8071102
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In data-driven methods for prognostics, the remaining useful lifetime (RUL) is predicted based on the health indicator (HI). The HI detects the condition of equipment or components by monitoring sensor data such as vibration signals. To construct the HI, multiple features are extracted from signals using time domain, frequency domain, and time-frequency domain analyses, and which are then fused. However, the process of selecting and fusing features for the HI is very complex and labor-intensive. We propose a novel time-frequency image feature to construct HI and predict the RUL. To convert the one-dimensional vibration signals to a two-dimensional (2-D) image, the continuous wavelet transform (CWT) extracts the time-frequency image features, i.e., the wavelet power spectrum. Then, the obtained image features are fed into a 2-D convolutional neural network (CNN) to construct the HI. The estimated HI from the proposed model is used for the RUL prediction. The accuracy of the RUL prediction is improved by using the image features. The proposed method compresses the complex process including feature extraction, selection, and fusion into a single algorithm by adopting a deep learning approach. The proposed method is validated using a bearing dataset provided by PRONOSTIA. The results demonstrate that the proposed method is superior to related studies using the same dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] A dual-stream temporal convolutional network for remaining useful life prediction of rolling bearings
    Zhang, Yazhou
    Zhao, Xiaoqiang
    Xu, Rongrong
    Peng, Zhenrui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [32] A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings
    Cao, Yudong
    Ding, Yifei
    Jia, Minping
    Tian, Rushuai
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 215
  • [33] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [34] A novel graph convolutional feature based convolutional neural network for stock trend prediction
    Chen, Wei
    Jiang, Manrui
    Zhang, Wei-Guo
    Chen, Zhensong
    INFORMATION SCIENCES, 2021, 556 : 67 - 94
  • [35] Multiscale attentional residual neural network framework for remaining useful life prediction of bearings
    Yu, Wen
    Pi, Dechang
    Xie, Lingqiang
    Luo, Yi
    MEASUREMENT, 2021, 177
  • [36] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [37] Feature extraction using wavelet transform for neural network based image classification.
    Sarlashkar, MN
    Bodruzzaman, M
    Malkani, MJ
    THIRTIETH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY (SSST), 1998, : 412 - 416
  • [38] Remaining Useful Life Prediction Method Based on Convolutional Neural Network and Long Short-Term Memory Neural Network
    Zhao, Kaisheng
    Zhang, Jing
    Chen, Shaowei
    Wen, Pengfei
    Ping, Wang
    Zhao, Shuai
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 336 - 343
  • [39] A Feature Fusion-Based Method for Remaining Useful Life Prediction of Rolling Bearings
    Liu, Jie
    Yang, Zian
    Xie, Jingsong
    Wang, Ruijie
    Liu, Shanhui
    Xi, Darun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [40] DCFNet: Infrared and Visible Image Fusion Network Based on Discrete Wavelet Transform and Convolutional Neural Network
    Wu, Dan
    Wang, Yanzhi
    Wang, Haoran
    Wang, Fei
    Gao, Guowang
    SENSORS, 2024, 24 (13)