A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather Simulations

被引:14
作者
Yashiro, Hisashi [1 ]
Terasaki, Koji [2 ]
Kawai, Yuta [2 ]
Kudo, Shuhei [2 ]
Miyoshi, Takemasa [2 ]
Imamura, Toshiyuki [2 ]
Minami, Kazuo [2 ]
Inoue, Hikaru [3 ]
Nishiki, Tatsuo [3 ]
Saji, Takayuki [4 ]
Satoh, Masaki [5 ]
Tomita, Hirofumi [2 ]
机构
[1] Natl Inst Environm Studies NIES, Tsukuba, Ibaraki, Japan
[2] RIKEN Ctr Computat Sci R CCS, Kobe, Hyogo, Japan
[3] Fujitsu Ltd, Tech Comp Solut Unit, Chiba, Japan
[4] Metro Inc, Numazu, Japan
[5] Univ Tokyo, Atmosphere & Ocean Res Inst AORI, Kashiwa, Chiba, Japan
来源
PROCEEDINGS OF SC20: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS (SC20) | 2020年
关键词
numerical weather prediction; data assimilation; Fugaku; PREDICTION; FRAMEWORK; MODELS; NICAM;
D O I
10.1109/SC41405.2020.00005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerical weather prediction (NWP) supports our daily lives. Weather models require higher spatiotemporal resolutions to prepare for extreme weather disasters and reduce the uncertainty of predictions. The accuracy of the initial state of the weather simulation is also critical; thus, we need more advanced data assimilation (DA) technology. By combining resolution and ensemble size, we have achieved the world's largest weather DA experiment using a global cloud-resolving model and an ensemble Kalman filter method. The number of grid points was similar to 44 trillion. and 1.3 Pill of data was passed from the model simulation part to the DA part. We adopted a data-centric application design and approximate computing to speed up the overall system of DA. Our DA system, named MCAM-LETKF, scales to 131,072 nodes (6,291,456 cores) of the supercomputer Fugaku with a sustained performance of 29 PFLOPS and 79 PFLOPS for the simulation and DA parts, respectively.
引用
收藏
页数:10
相关论文
共 39 条
  • [1] [Anonymous], 2016, P PLATF ADV SCI COMP
  • [2] [Anonymous], NCEP ADP Global Upper Air and Surface Weather Observations (PREPBUFR format)
  • [3] Bonavita M., 2017, ECMWF TECH MEMO, DOI [10.21957/tx1-pjd2p, DOI 10.21957/TX1-PJD2P]
  • [4] Atlas: A library for numerical weather prediction and climate modelling
    Deconinck, Willem
    Bauer, Peter
    Diamantakis, Michail
    Hamrud, Mats
    Kuhnlein, Christian
    Maciel, Pedro
    Mengaldo, Gianmarco
    Quintino, Tiago
    Raoult, Baudouin
    Smolarkiewicz, Piotr K.
    Wedi, Nils P.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 : 188 - 204
  • [5] The use of imprecise processing to improve accuracy in weather & climate prediction
    Dueben, Peter D.
    McNamara, Hugh
    Palmer, T. N.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 271 : 2 - 18
  • [6] Redesigning CAM-SE for Peta-Scale Climate Modeling Performance and Ultra-High Resolution on Sunway TaihuLight
    Fu, Haohuan
    Liao, Junfeng
    Ding, Nan
    Duan, Xiaohui
    Gan, Lin
    Liang, Yishuang
    Wang, Xinliang
    Yang, Jinzhe
    Zheng, Yan
    Liu, Weiguo
    Wang, Lanning
    Yang, Guangwen
    [J]. SC'17: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2017,
  • [7] Near-global climate simulation at 1 km resolution: establishing a performance baseline on 4888 GPUs with COSMO 5.0
    Fuhrer, Oliver
    Chadha, Tarun
    Hoefler, Torsten
    Kwasniewski, Grzegorz
    Lapillonne, Xavier
    Leutwyler, David
    Luthi, Daniel
    Osuna, Carlos
    Schar, Christoph
    Schulthess, Thomas C.
    Vogt, Hannes
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) : 1665 - 1681
  • [8] Improving Weather Forecast Skill through Reduced-Precision Data Assimilation
    Hatfield, Sam
    Subramanian, Aneesh
    Palmer, Tim
    Duben, Peter
    [J]. MONTHLY WEATHER REVIEW, 2018, 146 (01) : 49 - 62
  • [9] Hotta D., 2017, 3 RIKEN INT S DATA A
  • [10] Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter
    Hunt, Brian R.
    Kostelich, Eri J.
    Szunyogh, Istvan
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 112 - 126