MACHINE LEARNING METHODS FOR ROAD EDGE DETECTION ON FUSED AIRBORNE HYPERSPECTRAL AND LIDAR DATA

被引:7
作者
Senchuri, Rabin [1 ]
Kuras, Agnieszka [1 ]
Burud, Ingunn [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Sci & Technol, PB 5003, N-1430 As, Norway
来源
2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS) | 2021年
关键词
Hyperspectral; road edge detection; LiDAR; machine learning; data fusion; remote sensing; CLASSIFICATION; EXTRACTION; NETWORK;
D O I
10.1109/WHISPERS52202.2021.9484007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last decades, remote sensing sensors, such as hyperspectral systems or LiDAR scanners, have been used for urban mapping. However, an analysis in the urban environment is very complex in applications, e.g., road detection, city management, and urban planning. One of the important urban features is the detection of the road edges. In this study, an approach on multisensory hyperspectral and LiDAR data fusion (HL-Fusion) is introduced for road edge detection using different machine learning algorithms, such as Support Vector Machines, Random Forests, and Convolutional Neural Networks. The first results show that the Random Forest algorithm outperformed in the experiments on the study area at Oslo's surroundings in Norway. This study opens a window for further investigation on machine learning algorithms and a better understanding of HL-Fusion capabilities.
引用
收藏
页数:5
相关论文
共 22 条
[1]   SEMI-SUPERVISED CLASSIFICATION OF HYPERSPECTRAL IMAGE USING RANDOM FOREST ALGORITHM [J].
Amini, S. ;
Homayouni, S. ;
Safari, A. .
2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014,
[2]  
Ben-Dor E, 2001, RE S D I PR, V4, P243
[3]   3D hyperspectral point cloud generation: Fusing airborne laser scanning and hyperspectral imaging sensors for improved object-based information extraction [J].
Brell, Maximilian ;
Segl, Karl ;
Guanter, Luis ;
Bookhagen, Bodo .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 149 :200-214
[4]   Improving Sensor Fusion: A Parametric Method for the Geometric Coalignment of Airborne Hyperspectral and Lidar Data [J].
Brell, Maximilian ;
Rogass, Christian ;
Segl, Karl ;
Bookhagen, Bodo ;
Guanter, Luis .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06) :3460-3474
[5]  
Chehata N., 2009, INT ARCH PHOTOGRAMM, V38
[6]   Hyperspectral Image Classification via Kernel Sparse Representation [J].
Chen, Yi ;
Nasrabadi, Nasser M. ;
Tran, Trac D. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (01) :217-231
[7]   DEEP FUSION OF HYPERSPECTRAL AND LIDAR DATA FOR THEMATIC CLASSIFICATION [J].
Chen, Yushi ;
Li, Chunyang ;
Ghamisi, Pedram ;
Shi, Chunyu ;
Gu, Yanfeng .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :3591-3594
[8]   Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest [J].
Debes, Christian ;
Merentitis, Andreas ;
Heremans, Roel ;
Hahn, Juergen ;
Frangiadakis, Nikolaos ;
van Kasteren, Tim ;
Liao, Wenzhi ;
Bellens, Rik ;
Pizurica, Aleksandra ;
Gautama, Sidharta ;
Philips, Wilfried ;
Prasad, Saurabh ;
Du, Qian ;
Pacifici, Fabio .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2405-2418
[9]   Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery [J].
Gu, Yanfeng ;
Wang, Chen ;
You, Di ;
Zhang, Yuhang ;
Wang, Shizhe ;
Zhang, Ye .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (07) :2852-2865
[10]   Predicting land cover change and avian community responses in rapidly urbanizing environments [J].
Hepinstall, Jeffrey A. ;
Alberti, Marina ;
Marzluff, John M. .
LANDSCAPE ECOLOGY, 2008, 23 (10) :1257-1276