Prp8, the pivotal protein of the spliceosomal catalytic center, evolved from a retroelement-encoded reverse transcriptase

被引:66
作者
Dlakic, Mensur [1 ]
Mushegian, Arcady [2 ,3 ]
机构
[1] Montana State Univ, Dept Microbiol, Bozeman, MT 59717 USA
[2] Stowers Inst Med Res, Kansas City, MO 64110 USA
[3] Univ Kansas, Med Ctr, Dept Microbiol, Kansas City, KS 66160 USA
关键词
reverse transcriptase; bromodomain; spliceosome; Prp8; prokaryotic retroelement; origin of mRNA splicing; GROUP-II INTRON; SPLICING FACTOR PRP8; RETINITIS-PIGMENTOSA; CRYSTAL-STRUCTURE; STRUCTURE PREDICTION; HOMOLOGY DETECTION; DOMAIN-STRUCTURE; SUBUNIT TERT; RNA; EVOLUTION;
D O I
10.1261/rna.2396011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prp8 is the largest and most highly conserved protein of the spliceosome, encoded by all sequenced eukaryotic genomes but missing from prokaryotes and viruses. Despite all evidence that Prp8 is an integral part of the spliceosomal catalytic center, much remains to be learned about its molecular functions and evolutionary origin. By analyzing sequence and structure similarities between Prp8 and other protein domains, we show that its N-terminal region contains a putative bromodomain. The central conserved domain of Prp8 is related to the catalytic domain of reverse transcriptases (RTs) and is most similar to homologous enzymes encoded by prokaryotic retroelements. However, putative catalytic residues in this RT domain are only partially conserved and may not be sufficient for the nucleotidyltransferase activity. The RT domain is followed by an uncharacterized sequence region with relatives found in fungal RT-like proteins. This part of Prp8 is predicted to adopt an a-helical structure and may be functionally equivalent to diverse maturase/X domains of retroelements and to the thumb domain of retroviral RTs. Together with a previously identified C-terminal domain that has an RNaseH-like fold, our results suggest evolutionary connections between Prp8 and ancient mobile elements. Prp8 may have evolved by acquiring nucleic acid-binding domains from inactivated retroelements, and their present-day role may be in maintaining proper conformation of the bound RNA cofactors and substrates of the splicing reaction. This is only the second example-the other one being telomerase-of the RT recruitment from a genomic parasite to serve an essential cellular function.
引用
收藏
页码:799 / 808
页数:10
相关论文
共 58 条
[31]   Mobile group II introns [J].
Lambowitz, AM ;
Zirnmerly, S .
ANNUAL REVIEW OF GENETICS, 2004, 38 :1-35
[32]   Metal binding and substrate positioning by evolutionarily invariant U6 sequences in catalytically active protein-free snRNAs [J].
Lee, Caroline ;
Jaladat, Yasaman ;
Mohammadi, Afshin ;
Sharifi, Armin ;
Geisler, Sarah ;
Valadkhan, Saba .
RNA, 2010, 16 (11) :2226-2238
[33]   Intron evolution as a population-genetic process [J].
Lynch, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (09) :6118-6123
[34]   The origins of eukaryotic gene structure [J].
Lynch, M .
MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (02) :450-468
[35]   MPN plus , a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function [J].
Maytal-Kivity, Vered ;
Reis, Noa ;
Hofmann, Kay ;
Glickman, Michael H. .
BMC BIOCHEMISTRY, 2002, 3 :1-12
[36]   Evidence that U2/U6 helix I promotes both catalytic steps of pre-mRNA splicing and rearranges in between these steps [J].
Mefford, Melissa A. ;
Staley, Jonathan P. .
RNA, 2009, 15 (07) :1386-1397
[37]   Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA [J].
Mitchell, Meghan ;
Gillis, Andrew ;
Futahashi, Mizuko ;
Fujiwara, Haruhiko ;
Skordalakes, Emmanuel .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2010, 17 (04) :513-U163
[38]   EVOLUTIONARY RELATIONSHIPS AMONG GROUP-II INTRON-ENCODED PROTEINS AND IDENTIFICATION OF A CONSERVED DOMAIN THAT MAY BE RELATED TO MATURASE FUNCTION [J].
MOHR, G ;
PERLMAN, PS ;
LAMBOWITZ, AM .
NUCLEIC ACIDS RESEARCH, 1993, 21 (22) :4991-4997
[39]   Structure and function of an RNase H domain at the heart of the spliceosome [J].
Pena, Vladimir ;
Rozov, Alexey ;
Fabrizio, Patrizia ;
Luehrmann, Reinhard ;
Wahl, Markus C. .
EMBO JOURNAL, 2008, 27 (21) :2929-2940
[40]   Structure of a multipartite protein-protein interaction domain in splicing factor Prp8 and its link to Retinitis pigmentosa [J].
Pena, Vladimir ;
Liu, Sunbin ;
Bujnicki, Janusz M. ;
Luhrmann, Reinhard ;
Wahl, Markus C. .
MOLECULAR CELL, 2007, 25 (04) :615-624