A Flexible Online State of Health Estimation Approach for Lithium -ion Battery

被引:0
作者
Linghu, Jinqing [1 ]
Kang, Longyun [2 ]
Luo, Xuan [2 ]
Lu, Chusheng [2 ]
Lin, Hongye [2 ]
Zhao, Zixian [2 ]
机构
[1] Zunyi Normal Univ, Sch Engn, Zunyi, Guizhou, Peoples R China
[2] South China Univ Technol, Sch Elect Power, Guangzhou, Peoples R China
来源
2020 IEEE 9TH INTERNATIONAL POWER ELECTRONICS AND MOTION CONTROL CONFERENCE (IPEMC2020-ECCE ASIA) | 2020年
关键词
lithium-ion battery; state of health; incremental capacity; segmented analysis; CYCLE LIFE; CHARGE;
D O I
10.1109/IPEMC-ECCEAsia48364.2020.9367785
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The estimation of state of health (SOH) for lithium-ion batteries is critical to the safe and reliable operation of electric vehicles and other energy storage devices. To estimate SOH accurately and flexibly, this paper proposes an improved method based on incremental capacity (IC) analysis. It processes the initial IC data from constant current charging by double filtering, which greatly reduces the number of data needed to eliminate noise on IC curve, and also the voltage threshold for obtaining IC valuable data. Then the estimation of battery SOH is converted to the calculation of the area enclosed by the IC curve, voltage marking line and coordinate axes. In addition, the method of IC curve segmented analysis is adopted to make SOH estimation more flexible and fast. Experimental results show that the proposed approach can accurately estimate the battery SOH in different charging or discharging depths, and is suitable for batteries with different aging conditions.
引用
收藏
页码:2195 / 2201
页数:7
相关论文
共 20 条
[1]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[2]   Online state of health estimation on NMC cells based on predictive analytics [J].
Berecibar, Maitane ;
Devriendt, Floris ;
Dubarry, Matthieu ;
Villarreal, Igor ;
Omar, Noshin ;
Verbeke, Wouter ;
Van Mierlo, Joeri .
JOURNAL OF POWER SOURCES, 2016, 320 :239-250
[3]   State of health battery estimator enabling degradation diagnosis: Model and algorithm description [J].
Dubarry, Matthieu ;
Berecibar, M. ;
Devie, A. ;
Ansean, D. ;
Omar, N. ;
Villarreal, I. .
JOURNAL OF POWER SOURCES, 2017, 360 :59-69
[4]   Performance analysis and SOH (state of health) evaluation of lithium polymer batteries through electrochemical impedance spectroscopy [J].
Galeotti, Matteo ;
Cina, Lucio ;
Giammanco, Corrado ;
Cordiner, Stefano ;
Di Carlo, Aldo .
ENERGY, 2015, 89 :678-686
[5]   A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification [J].
Han, Xuebing ;
Ouyang, Minggao ;
Lu, Languang ;
Li, Jianqiu ;
Zheng, Yuejiu ;
Li, Zhe .
JOURNAL OF POWER SOURCES, 2014, 251 :38-54
[6]   A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation [J].
Hu, Chao ;
Youn, Byeng D. ;
Chung, Jaesik .
APPLIED ENERGY, 2012, 92 :694-704
[7]  
Ira Bloom, 2010, DIFFERENTIAL VOLTAGE
[8]   State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression [J].
Li, Xiaoyu ;
Yuan, Changgui ;
Li, Xiaohui ;
Wang, Zhenpo .
ENERGY, 2020, 190
[9]   A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter [J].
Li, Yi ;
Abdel-Monem, Mohamed ;
Gopalakrishnan, Rahul ;
Berecibar, Maitane ;
Nanini-Maury, Elise ;
Omar, Noshin ;
van den Bossche, Peter ;
Van Mierlo, Joeri .
JOURNAL OF POWER SOURCES, 2018, 373 :40-53
[10]   Estimation for state-of-charge of lithium-ion battery based on an adaptive high-degree cubature Kalman filter [J].
Linghu, Jinqing ;
Kang, Longyun ;
Liu, Ming ;
Luo, Xuan ;
Feng, Yuanbin ;
Lu, Chusheng .
ENERGY, 2019, 189