Homogenization of a single phase flow through a porous medium in a thin layer

被引:17
作者
Amaziane, B. [1 ]
Pankratov, L. [2 ]
Piatnitski, A. [3 ,4 ]
机构
[1] Univ Pau & Pays Adour, CNRS, UMR5142, Lab Math Appl, F-64000 Pau, France
[2] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] RAS, Norway & Lebedev Phys Inst, Moscow 119991, Russia
关键词
homogenization; double porosity; thin porous structure; single phase flow;
D O I
10.1142/S0218202507002339
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with homogenization of stationary and non-stationary high contrast periodic double porosity type problem stated in a porous medium containing a 2D or 3D thin layer. We consider two different types of high contrast medium. The medium of the first type is characterized by the asymptotically vanishing volume fraction of fractures (highly permeable part). The medium of the second type has uniformly positive volume fraction of fracture part. In both cases we construct the homogenized models and prove the convergence results. The techniques used in this work are based on a special version of the two-scale convergence method adapted to thin structures. The resulting homogenized problems are dual-porosity type models that contain terms representing memory effects.
引用
收藏
页码:1317 / 1349
页数:33
相关论文
共 22 条
[1]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[2]   Homogenization of a degenerate triple porosity model with thin fissures [J].
Amaziane, B ;
Goncharenko, M ;
Pankratov, L .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :335-359
[3]   Characterization of the flow for a single fluid in an excavation damaged zone [J].
Amaziane, B ;
Bourgeat, A ;
Goncharenko, M ;
Pankratov, L .
COMPTES RENDUS MECANIQUE, 2004, 332 (01) :79-84
[4]  
[Anonymous], 2006, PROGR MATH PHYS
[5]   DERIVATION OF THE DOUBLE POROSITY MODEL OF SINGLE-PHASE FLOW VIA HOMOGENIZATION THEORY [J].
ARBOGAST, T ;
DOUGLAS, J ;
HORNUNG, U .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (04) :823-836
[6]  
Bakhvalov NS, 1989, Homogenization: Averaging processes in periodic media, DOI DOI 10.1007/978-94-009-2247-1
[7]  
Barenblatt G. I., 1960, PMM-J APPL MATH MEC, V24, P1286, DOI DOI 10.1016/0021-8928(60)90107-6
[8]  
Bellieud M, 2004, J CONVEX ANAL, V11, P363
[9]   A homogenized model of an underground waste repository including a disturbed zone [J].
Bourgeat, A ;
Marusic-Paloka, E .
MULTISCALE MODELING & SIMULATION, 2005, 3 (04) :918-939
[10]  
Bourgeat A, 2004, ASYMPTOTIC ANAL, V38, P129