On the solvability of one boundary value problem for some semilinear wave equations with source terms

被引:3
作者
Kharibegashvili, Sergo [1 ,2 ]
Midodashvili, Bidzina [3 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[2] Georgian Tech Univ, Dept Math, GE-0175 Tbilisi, Georgia
[3] I Javakhishvili Tbilisi State Univ, GE-0143 Tbilisi, Georgia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2011年 / 18卷 / 02期
关键词
Sobolev problem; Semilinear wave equations; Source terms; Global and local solvability; Nonexistence; CAUCHY CHARACTERISTIC PROBLEM; GLOBAL-SOLUTIONS; BLOW-UP; MULTIDIMENSIONAL VERSION; DARBOUX PROBLEM; NONEXISTENCE; EXISTENCE; ABSENCE;
D O I
10.1007/s00030-010-0087-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a conic domain of time type for one class of semilinear wave equations with source terms we consider a Sobolev problem representing a multidimensional version of the Darboux second problem. The questions on global and local solvability, uniqueness and absence of solutions of this problem are investigated.
引用
收藏
页码:117 / 138
页数:22
相关论文
共 33 条
[11]   Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation [J].
Kenig, Carlos E. ;
Merle, Frank .
ACTA MATHEMATICA, 2008, 201 (02) :147-212
[12]  
Kharibegashvili S, 2006, MEM DIFFER EQU MATH, V37, P1
[13]   On the solvability of the Cauchy characteristic problem for a nonlinear equation with iterated wave operator in the principal part [J].
Kharibegashvili, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :71-81
[14]   On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations [J].
Kharibegashvili, S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) :912-924
[15]   On the existence or the absence of global solutions of the Cauchy characteristic problem for some nonlinear hyperbolic equations [J].
Kharibegashvili, S. .
BOUNDARY VALUE PROBLEMS, 2005, 2005 (03) :359-376
[16]  
Kharibegashvili S, 2009, MEM DIFFER EQU MATH, V46, P1
[17]  
Kharibegashvili S., 1995, Mem. Differential Equations Math. Phys., V4, P1
[18]   On the existence or absence of global solutions for the multidimensional version of the second Darboux problem for some nonlinear hyperbolic equations [J].
Kharibegashvili, S. S. .
DIFFERENTIAL EQUATIONS, 2007, 43 (03) :402-416
[19]   On the nonexistence of global solutions of the characteristic Cauchy problem for a nonlinear wave equation in a conical domain [J].
Kharibegashvili, SS .
DIFFERENTIAL EQUATIONS, 2006, 42 (02) :279-290
[20]  
Kondratev VA., 1967, Proc. Moscow Math. Soc, V16, P293