On the solvability of one boundary value problem for some semilinear wave equations with source terms

被引:3
作者
Kharibegashvili, Sergo [1 ,2 ]
Midodashvili, Bidzina [3 ]
机构
[1] A Razmadze Math Inst, GE-0193 Tbilisi, Georgia
[2] Georgian Tech Univ, Dept Math, GE-0175 Tbilisi, Georgia
[3] I Javakhishvili Tbilisi State Univ, GE-0143 Tbilisi, Georgia
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2011年 / 18卷 / 02期
关键词
Sobolev problem; Semilinear wave equations; Source terms; Global and local solvability; Nonexistence; CAUCHY CHARACTERISTIC PROBLEM; GLOBAL-SOLUTIONS; BLOW-UP; MULTIDIMENSIONAL VERSION; DARBOUX PROBLEM; NONEXISTENCE; EXISTENCE; ABSENCE;
D O I
10.1007/s00030-010-0087-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a conic domain of time type for one class of semilinear wave equations with source terms we consider a Sobolev problem representing a multidimensional version of the Darboux second problem. The questions on global and local solvability, uniqueness and absence of solutions of this problem are investigated.
引用
收藏
页码:117 / 138
页数:22
相关论文
共 33 条
[1]  
[Anonymous], 1988, NONLINEAR DIFFERENTI
[2]  
[Anonymous], 1942, MAT SB
[3]  
[Anonymous], 1973, CONCISE COURSE THEOR
[4]  
[Anonymous], 1961, Math. Z, DOI DOI 10.1007/BF01180181
[5]  
[Anonymous], GEOMETRIC THEORY SEM
[6]  
Bitsadze A. V., 1981, Some Classes of Partial Differential Equations
[7]  
Hormander Lars, 1997, Mathematiques & Applications (Berlin) Mathematics & Applications, V26
[8]   Global existence of solutions for semilinear damped wave equations in RN with noncompactly supported initial data [J].
Ikehata, R ;
Tanizawa, K .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 61 (07) :1189-1208