Cubic Edge-Transitive bi-Cayley Graphs on Generalized Dihedral Group

被引:1
作者
Wang, Xue [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Edge-transitive; Bi-Cayley graph; Girth; Generalized dihedral group;
D O I
10.1007/s40840-021-01205-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first prove that the connected cubic edge-transitive bi-Cayley graphs over a generalized dihedral group have girth 6. Using this, a complete classification is given of these graphs.
引用
收藏
页码:537 / 547
页数:11
相关论文
共 13 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Conder M., 2002, J COMB MATH COMB COM, V40, P41
[3]   Symmetric cubic graphs of small girth [J].
Conder, Marston ;
Nedela, Roman .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) :757-768
[4]   Edge-transitive bi-Cayley graphs [J].
Conder, Marston ;
Zhou, Jin-Xin ;
Feng, Yan-Quan ;
Zhang, Mi-Mi .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 :264-306
[5]   Characterization of edge-transitive 4-valent bicirculants [J].
Kovacs, Istvan ;
Kuzman, Bostjan ;
Malnic, Aleksander ;
Wilson, Steve .
JOURNAL OF GRAPH THEORY, 2012, 69 (04) :441-463
[6]  
Marusic D, 2000, CROAT CHEM ACTA, V73, P969
[7]   A classification of cubic bicirculants [J].
Pisanski, Tomaz .
DISCRETE MATHEMATICS, 2007, 307 (3-5) :567-578
[8]  
Suzuki M., 1982, Group Theory I, V247
[9]   Trivalent dihedrants and bi-dihedrants [J].
Zhang, Mi-Mi ;
Zhou, Jin-Xin .
ARS MATHEMATICA CONTEMPORANEA, 2021, 21 (02)
[10]   Trivalent vertex-transitive bi-dihedrants [J].
Zhang, Mi-Mi ;
Zhou, Jin-Xin .
DISCRETE MATHEMATICS, 2017, 340 (08) :1757-1772