Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap

被引:30
作者
Sowinski, Tomasz [1 ,2 ]
Brewczyk, Miroslaw [3 ]
Gajda, Mariusz [1 ,4 ]
Rzazewski, Kazimierz [4 ,5 ]
机构
[1] Inst Fiz PAN, PL-02668 Warsaw, Poland
[2] Wydzial Biol & Nauk Srodowisku UKSW, PL-01938 Warsaw, Poland
[3] Uniwersytet Bialymstoku, Wydzial Fiz, PL-15424 Bialystok, Poland
[4] Wydzial Matemat Przyrodn SNS UKSW, PL-02668 Warsaw, Poland
[5] Ctr Fiz Teoretycznej PAN, PL-02668 Warsaw, Poland
关键词
QUANTUM; TELEPORTATION; VARIABLES; ATOMS; GAS;
D O I
10.1103/PhysRevA.82.053631
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study dynamics of two interacting ultracold Bose atoms in a harmonic oscillator potential in one spatial dimension. Making use of the exact solution of the eigenvalue problem of a particle in the delta-like potential, we study the time evolution of an initially separable state of two particles. The corresponding time-dependent single-particle density matrix is obtained and diagonalized, and single-particle orbitals are found. This allows us to study decoherence as well as creation of entanglement during the dynamics. The evolution of the orbital corresponding to the largest eigenvalue is then compared to the evolution according to the Gross-Pitaevskii equation. We show that if initially the center of mass and relative degrees of freedom are entangled, then the Gross-Pitaevskii equation fails to reproduce the exact dynamics and entanglement is produced dynamically. We stress that predictions of our study can be verified experimentally in an optical lattice in the low-tunneling limit.
引用
收藏
页数:7
相关论文
共 30 条
[1]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[2]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[3]   ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS [J].
BELL, JS .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :447-&
[4]   Quantum error correction for communication with linear optics [J].
Braunstein, SL .
NATURE, 1998, 394 (6688) :47-49
[5]   Teleportation of continuous quantum variables [J].
Braunstein, SL ;
Kimble, HJ .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :869-872
[6]   Two cold atoms in a harmonic trap [J].
Busch, T ;
Englert, BG ;
Rzazewski, K ;
Wilkens, M .
FOUNDATIONS OF PHYSICS, 1998, 28 (04) :549-559
[7]   Vortex nucleation in a mesoscopic Bose superfluid and breaking of the parity symmetry [J].
Dagnino, D. ;
Barberan, N. ;
Lewenstein, M. .
PHYSICAL REVIEW A, 2009, 80 (05)
[8]   Vortex nucleation as a case study of symmetry breaking in quantum systems [J].
Dagnino, D. ;
Barberan, N. ;
Lewenstein, M. ;
Dalibard, J. .
NATURE PHYSICS, 2009, 5 (06) :431-437
[9]   Theory of Bose-Einstein condensation in trapped gases [J].
Dalfovo, F ;
Giorgini, S ;
Pitaevskii, LP ;
Stringari, S .
REVIEWS OF MODERN PHYSICS, 1999, 71 (03) :463-512
[10]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780