Structural and Mechanical Properties of Amyloid Beta Fibrils: A Combined Experimental and Theoretical Approach

被引:26
作者
Paul, Thomas J. [1 ]
Hoffmann, Zachary [1 ]
Wang, Congzhou [2 ]
Shanmugasundaram, Maruda [3 ]
DeJoannis, Jason [4 ]
Shekhtman, Alexander [3 ]
Lednev, Igor K. [3 ]
Yadavalli, Vamsi K. [2 ]
Prabhakar, Rajeev [1 ]
机构
[1] Univ Miami, Dept Chem, Coral Gables, FL 33146 USA
[2] Virginia Commonwealth Univ, Dept Chem & Life Sci Engn, Richmond, VA 23284 USA
[3] SUNY Albany, Dept Chem, Albany, NY 12222 USA
[4] Dassault Syst BIOVIA, San Deigo, CA 92121 USA
基金
美国国家科学基金会;
关键词
EXPERIMENTAL CONSTRAINTS; FORCE MICROSCOPY; ALZHEIMERS; PROTEIN; PEPTIDE; BIOMATERIALS; AGGREGATION; SCAFFOLDS; NANOWIRES; MODEL;
D O I
10.1021/acs.jpclett.6b01066
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this combined experimental (deep ultraviolet resonance Raman (DUVRR) spectroscopy and atomic force microscopy (AFM)) and theoretical (molecular dynamics (MD) simulations and stress-strain (SS)) study, the structural and mechanical properties of amyloid beta (A beta 40) fibrils have been investigated. The DUVRR spectroscopy and AFM experiments confirmed the formation of linear, unbranched and beta-sheet rich fibrils. The fibrils (A beta 40)(n), formed using n monomers, were equilibrated using all-atom MD simulations. The structural properties such as beta-sheet character, twist, interstrand distance, and periodicity of these fibrils were found to be in agreement with experimental measurements. Furthermore, Young's modulus (Y) = 4.2 GPa computed using SS calculations was supported by measured values of 1.79 +/- 0.41 and 3.2 +/- 0.8 GPa provided by two separate AFM experiments. These results revealed size dependence of structural and material properties of amyloid fibrils and show the utility of such combined experimental and theoretical studies in the design of precisely engineered biomaterials.
引用
收藏
页码:2758 / 2764
页数:7
相关论文
共 76 条
[21]   Amyloid-based nanosensors and nanodevices [J].
Hauser, Charlotte A. E. ;
Maurer-Stroh, Sebastian ;
Martins, Ivo C. .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (15) :5326-5345
[22]   Biocompatibility evaluation of tissue-engineered decellularized scaffolds for biomedical application [J].
Hussein, Kamal Hany ;
Park, Kyung-Mee ;
Kang, Kyung-Sun ;
Woo, Heung-Myong .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2016, 67 :766-778
[24]   Self healing hydrogels composed of amyloid nano fibrils for cell culture and stem cell differentiation [J].
Jacob, Reeba S. ;
Ghosh, Dhiman ;
Singh, Pradeep K. ;
Basu, Santanu K. ;
Jha, Narendra Nath ;
Das, Subhadeep ;
Sukul, Pradip K. ;
Patil, Sachin ;
Sathaye, Sadhana ;
Kumar, Ashutosh ;
Chowdhury, Arindam ;
Malik, Sudip ;
Sen, Shamik ;
Maji, Samir K. .
BIOMATERIALS, 2015, 54 :97-105
[25]   The protofilament structure of insulin amyloid fibrils [J].
Jimenez, JL ;
Nettleton, EJ ;
Bouchard, M ;
Robinson, CV ;
Dobson, CM ;
Saibil, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (14) :9196-9201
[26]   A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy [J].
Khurana, R ;
Ionescu-Zanetti, C ;
Pope, M ;
Li, J ;
Nielson, L ;
Ramírez-Alvarado, M ;
Regan, L ;
Fink, AL ;
Carter, SA .
BIOPHYSICAL JOURNAL, 2003, 85 (02) :1135-1144
[27]   Role of intermolecular forces in defining material properties of protein nanofibrils [J].
Knowles, Tuomas P. ;
Fitzpatrick, Anthony W. ;
Meehan, Sarah ;
Mott, Helen R. ;
Vendruscolo, Michele ;
Dobson, Christopher M. ;
Welland, Mark E. .
SCIENCE, 2007, 318 (5858) :1900-1903
[28]  
Knowles TPJ, 2011, NAT NANOTECHNOL, V6, P469, DOI [10.1038/nnano.2011.102, 10.1038/NNANO.2011.102]
[29]  
Lednev I. K., 2007, PROTEIN STRUCTURES M
[30]   Hybrid Nanocomposites of Gold Single-Crystal Platelets and Amyloid Fibrils with Tunable Fluorescence, Conductivity, and Sensing Properties [J].
Li, Chaoxu ;
Bolisetty, Sreenath ;
Mezzenga, Raffaele .
ADVANCED MATERIALS, 2013, 25 (27) :3694-3700