On the representation of the number of integral points of an elliptic curve modulo a prime number

被引:0
作者
Rassias, Michael T. [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
关键词
Elliptic curves; Integral points; Exponential sums; Riemann zeta function;
D O I
10.1007/s11139-013-9524-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we shall investigate the problem of the representation of the number of integral points of an elliptic curve modulo a prime number p. We present a way of expressing an exponential sum which involves polynomials of third degree, in explicit non-exponential terms. In the process, we prove explicit formulas for the calculation of certain series involving the Riemann zeta function.
引用
收藏
页码:483 / 499
页数:17
相关论文
共 22 条
  • [1] [Anonymous], 1986, GRADUATE TEXTS MATH
  • [2] [Anonymous], 1985, The Riemann Zeta-Function: Theory and Applications
  • [3] [Anonymous], 1992, Mathematics and its Applications (Soviet Series)
  • [4] Apostol T., 1984, INTRO ANAL NUMBER TH
  • [5] ELLIPTIC-CURVES AND PRIMALITY PROVING
    ATKIN, AOL
    MORAIN, F
    [J]. MATHEMATICS OF COMPUTATION, 1993, 61 (203) : 29 - 68
  • [6] Elkies Noam D., 1998, COMPUTATIONAL PERSPE, P21
  • [7] Goldwasser S., 1986, P 18 ANN ACM S THEOR, P316
  • [8] Arithmetic theory of cubic number bodies on a class body theoretical basis.
    Hasse, H
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1930, 31 : 565 - 582
  • [9] Havil J, 2003, GAMMA: EXPLORING EULERS CONSTANT, P1
  • [10] IRELAND K, 1990, GTM, V84