Explicit isogeometric topology optimization using moving morphable components

被引:89
作者
Hou, Wenbin [1 ,2 ]
Gai, Yundong [1 ]
Zhu, Xuefeng [1 ,2 ]
Wang, Xuan [1 ]
Zhao, Chao [1 ]
Xu, Longkun [1 ]
Jiang, Kai [1 ]
Hu, Ping [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Automot Engn, Dalian 116024, Peoples R China
[2] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian 116024, Peoples R China
关键词
Isogeometric analysis; NURBS; Topology optimization; Moving morphable components; Topology description function; Sensitivity analysis; LEVEL SET METHOD; SHAPE OPTIMIZATION; DESIGN; NURBS; CODE; CAD;
D O I
10.1016/j.cma.2017.08.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose an explicit isogeometric topology optimization approach based on Moving Morphable Components (MMCs). The prescribed design domain is discretized using a NURBS patch and NURBS-based Isogeometric Analysis (IGA) method is adopted for structural response analysis and sensitivity analysis. We employ the MMCs to represent the geometries of structural components (a subset of the design domain) with use of explicit design parameters. The central coordinates, half-length, half-width, and inclined angles of MMCs are taken as design variables. The proposed method not only inherits the explicitness of the MMC-based topology optimization, but also embraces the merits of the Isogeometric Analysis (IGA) such as a tighter link with Computer-Aided Design (CAD) and higher-order continuity of the basis functions. Several numerical examples illustrate that the presented method based on IGA is more robust and stable than FEM-based topology optimization using MMCs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:694 / 712
页数:19
相关论文
共 64 条
[1]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[2]   Efficient topology optimization in MATLAB using 88 lines of code [J].
Andreassen, Erik ;
Clausen, Anders ;
Schevenels, Mattias ;
Lazarov, Boyan S. ;
Sigmund, Ole .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 43 (01) :1-16
[3]  
[Anonymous], COMPUT METHODS APPL
[4]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[5]   Isogeometric analysis:: Approximation, stability and error estimates for h-refined meshes [J].
Bazilevs, Y. ;
Da Veiga, L. Beirao ;
Cottrell, J. A. ;
Hughes, T. J. R. ;
Sangalli, G. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (07) :1031-1090
[6]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[7]   Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device [J].
Bazilevs, Y. ;
Gohean, J. R. ;
Hughes, T. J. R. ;
Moser, R. D. ;
Zhang, Y. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (45-46) :3534-3550
[8]  
Bendse Martin P., 1989, Struct Optim, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[9]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[10]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289