Self-winding of helices in plant tendrils and cellulose liquid crystal fibers

被引:60
作者
Godinho, M. H. [1 ,3 ]
Canejo, J. P. [1 ,3 ]
Feio, G. [1 ,3 ]
Terentjev, E. M. [2 ]
机构
[1] Univ Nova Lisboa, Dept Ciencia Mat, P-2829516 Caparica, Portugal
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 OHE, England
[3] Univ Nova Lisboa, CENIMAT I3N, P-2829516 Caparica, Portugal
关键词
PERVERSION; NANOFIBERS; TRANSITION; DYNAMICS;
D O I
10.1039/c0sm00427h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Passiflora edulis, like other climbing plants, possesses long, tender, soft, curly and flexible organs called tendrils whose circumnutation allows the plant to find support. Tendrils curl into spirals or twist into a helix, often of one handedness over half of its length and of the opposite handedness over the other half, the two halves being connected by a short straight section - a perversion, depending on whether they are supported at just one end or supported at both ends, respectively. This is a consequence of an intrinsic curvature of the tendrils. We report on liquid crystalline cellulosic fibers and jets, which mimic the shapes of helical tendril structures. Liquid crystalline and isotropic cellulosic precursor solutions of curved and straight fibers are examined using nuclear magnetic resonance imaging (MRI) and polarizing optical microscopy (POM) techniques to determine morphological and structural features contributing to fiber curvature. We study the subtle physical mechanisms responsible for self-winding behavior as a result of the intrinsic curvature due to the non-uniform deformation of filaments. In the case of liquid-crystalline cellulosic fibers, this is due to a core of disclination forming off-axis along the filament. We also highlight the critical dependence of the helical structures on temperature, which offers a potential for direct fabrication of biocompatible tunable high-surface area membranes with mechanical adaptability.
引用
收藏
页码:5965 / 5970
页数:6
相关论文
共 27 条
[1]  
ASADA T, 1981, MOL CRYST LIQ CRYST, V14, P715
[2]   Super-helices for predicting the dynamics of natural hair [J].
Bertails, Florence ;
Audoly, Basile ;
Cani, Marie-Paule ;
Querleux, Bernard ;
Leroy, Frederic ;
Leveque, Jean-Luc .
ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (03) :1180-1187
[3]   Liquid crystals and biological morphogenesis: Ancient and new questions [J].
Bouligand, Yves .
COMPTES RENDUS CHIMIE, 2008, 11 (03) :281-296
[4]   Cortical cell types and intermediate filament arrangements correlate with fiber curvature in Japanese human hair [J].
Bryson, Warren G. ;
Harland, Duane P. ;
Caldwell, Jonathan P. ;
Vernon, James A. ;
Walls, Richard J. ;
Woods, Joy L. ;
Nagase, Shinobu ;
Itou, Takashi ;
Koike, Kenzo .
JOURNAL OF STRUCTURAL BIOLOGY, 2009, 166 (01) :46-58
[5]   Helical Twisting of Electrospun Liquid Crystalline Cellulose Micro- and Nanofibers [J].
Canejo, Joao P. ;
Borges, Joao P. ;
Godinho, M. Helena ;
Brogueira, Pedro ;
Teixeira, Paulo I. C. ;
Terentjev, Eugene M. .
ADVANCED MATERIALS, 2008, 20 (24) :4821-+
[6]   Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis [J].
Capadona, Jeffrey R. ;
Shanmuganathan, Kadhiravan ;
Tyler, Dustin J. ;
Rowan, Stuart J. ;
Weder, Christoph .
SCIENCE, 2008, 319 (5868) :1370-1374
[7]   TWISTING TRANSITION IN A CAPILLARY FILLED WITH CHIRAL SMECTIC-C LIQUID-CRYSTAL [J].
CRONIN, DW ;
TERENTJEV, EM ;
SONES, RA ;
PETSCHEK, RG .
MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1994, 238 :167-177
[8]  
Darwin C., 1888, MOVEMENTS HABITS CLI
[9]   How to mimic the shapes of plant tendrils on the nano and microscale: spirals and helices of electrospun liquid crystalline cellulose derivatives [J].
Godinho, M. H. ;
Canejo, J. P. ;
Pinto, L. F. V. ;
Borges, J. P. ;
Teixeira, P. I. C. .
SOFT MATTER, 2009, 5 (14) :2772-2776
[10]   Paleontology and chronology of two evolutionary transitions by hybridization in the Bahamian land snail Cerion [J].
Goodfriend, GA ;
Gould, SJ .
SCIENCE, 1996, 274 (5294) :1894-1897