Spatio-temporal phase retrieval in speckle interferometry with Hilbert transform and two-dimensional phase unwrapping

被引:3
作者
Li, Xiangyu [1 ,2 ]
Huang, Zhanhua [1 ,2 ]
Zhu, Meng [3 ,4 ]
He, Jin
Zhang, Hao [1 ,3 ,4 ]
机构
[1] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Dept Optoinformat Engn, Tianjin 300072, Peoples R China
[2] Minist Educ, Key Lab Optoelect Informat Technol, Tianjin 300072, Peoples R China
[3] Tianjin Jinhang Inst Tech Phys, Tianjin 300192, Peoples R China
[4] Tianjin Univ Technol & Educ, Coll Elect Engn, Dept Elect & Informat Engn, Tianjin 300222, Peoples R China
基金
中国国家自然科学基金;
关键词
dynamic speckle interferometry; phase retrieval; Hilbert transform; spatial phase unwrapping; EMPIRICAL MODE DECOMPOSITION; PATTERN INTERFEROMETRY;
D O I
10.1117/1.OE.53.12.124104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hilbert transform (HT) is widely used in temporal speckle pattern interferometry, but errors from low modulations might propagate and corrupt the calculated phase. A spatio-temporal method for phase retrieval using temporal HT and spatial phase unwrapping is presented. In time domain, the wrapped phase difference between the initial and current states is directly determined by using HT. To avoid the influence of the low modulation intensity, the phase information between the two states is ignored. As a result, the phase unwrapping is shifted from time domain to space domain. A phase unwrapping algorithm based on discrete cosine transform is adopted by taking advantage of the information in adjacent pixels. An experiment is carried out with a Michelson-type interferometer to study the out-of-plane deformation field. High quality whole-field phase distribution maps with different fringe densities are obtained. Under the experimental conditions, the maximum number of fringes resolvable in a 416 x 416 frame is 30, which indicates a 15 lambda. deformation along the direction of loading. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:7
相关论文
共 26 条
  • [1] [Anonymous], 1996, Hilbert transforms in signal processing
  • [2] PRODUCT THEOREM FOR HILBERT TRANSFORMS
    BEDROSIAN, E
    [J]. PROCEEDINGS OF THE IEEE, 1963, 51 (05) : 868 - &
  • [3] Phase measurement in temporal speckle pattern interferometry signals presenting low-modulated regions by means of the bidimensional empirical mode decomposition
    Belen Bernini, Maria
    Federico, Alejandro
    Kaufmann, Guillermo H.
    [J]. APPLIED OPTICS, 2011, 50 (05) : 641 - 647
  • [4] Phase Extraction in Dynamic Speckle Interferometry with Empirical Mode Decomposition and Hilbert Transform
    Equis, S.
    Jacquot, P.
    [J]. STRAIN, 2010, 46 (06) : 550 - 558
  • [5] The empirical mode decomposition: a must-have tool in speckle interferometry?
    Equis, Sebastien
    Jacquot, Pierre
    [J]. OPTICS EXPRESS, 2009, 17 (02): : 611 - 623
  • [6] Robust phase recovery in temporal speckle pattern interferometry using a 3D directional wavelet transform
    Federico, Alejandro
    Kaufmann, Guillermo H.
    [J]. OPTICS LETTERS, 2009, 34 (15) : 2336 - 2338
  • [7] Kinematic and deformation parameter measurement by spatiotemporal analysis of an interferogram sequence
    Fu, Yu
    Groves, Roger M.
    Pedrini, Giancarlo
    Osten, Wolfgang
    [J]. APPLIED OPTICS, 2007, 46 (36) : 8645 - 8655
  • [8] ROBUST 2-DIMENSIONAL WEIGHTED AND UNWEIGHTED PHASE UNWRAPPING THAT USES FAST TRANSFORMS AND ITERATIVE METHODS
    GHIGLIA, DC
    ROMERO, LA
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (01): : 107 - 117
  • [9] The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis
    Huang, NE
    Shen, Z
    Long, SR
    Wu, MLC
    Shih, HH
    Zheng, QN
    Yen, NC
    Tung, CC
    Liu, HH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1971): : 903 - 995
  • [10] Dynamic phase evaluation in sparse-sampled temporal speckle pattern sequence
    Huang, Y. H.
    Liu, Y. S.
    Hung, S. Y.
    Li, C. G.
    Janabi-Sharifi, Farrokh
    [J]. OPTICS LETTERS, 2011, 36 (04) : 526 - 528