Relationship Between MP and DPP for the Stochastic Optimal Control Problem of Jump Diffusions

被引:19
作者
Shi, Jing-Tao [1 ]
Wu, Zhen [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Peoples R China
关键词
Jump diffusions; Stochastic optimal control; Maximum principle; Dynamic programming principle; Verification theorem; Viscosity solution; VISCOSITY SOLUTIONS; MAXIMUM PRINCIPLE; FRAMEWORK;
D O I
10.1007/s00245-010-9115-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the stochastic optimal control problem of jump diffusions. The relationship between stochastic maximum principle and dynamic programming principle is discussed. Without involving any derivatives of the value function, relations among the adjoint processes, the generalized Hamiltonian and the value function are investigated by employing the notions of semijets evoked in defining the viscosity solutions. Stochastic verification theorem is also given to verify whether a given admissible control is optimal.
引用
收藏
页码:151 / 189
页数:39
相关论文
共 26 条
[1]   Viscosity solutions of nonlinear integro-differential equations [J].
Alvarez, O ;
Tourin, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (03) :293-317
[2]  
[Anonymous], 1989, STOCHASTIC DIFFERENT, DOI DOI 10.1002/BIMJ.4710320720
[3]   A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations (vol 23, pg 695, 2006) [J].
Arisawa, Mariko .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (01) :167-169
[4]   A new definition of viscosity solutions for a class of second-order degenerate elliptic integro-differential equations [J].
Arisawa, Mariko .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05) :695-711
[5]   Second-order elliptic integro-differential equations: viscosity solutions' theory revisited [J].
Barles, B. ;
Imbert, Cyril .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (03) :567-585
[6]  
Barles G., 1997, Stoch. Stoch. Rep., V60, P57, DOI 10.1080/17442509708834099
[7]  
Bensoussan A., 1981, LECT NOTES MATH, V972
[8]   INTRODUCTORY APPROACH TO DUALITY IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
SIAM REVIEW, 1978, 20 (01) :62-78
[9]   Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes [J].
Biswas, Imran H. ;
Jakobsen, Espen R. ;
Karlsen, Kenneth H. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2010, 62 (01) :47-80
[10]   Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance (vol 121, pg 94, 2004) [J].
Framstad, NC ;
Oksendal, B ;
Sulem, A .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 124 (02) :511-512