Asymptotic analysis of high frequency modes in thin rods

被引:7
作者
Irago, H [1 ]
Kerdid, N
Viano, JM
机构
[1] Univ Santiago de Compostela, Dept Matemat Aplicada, Santiago De Compostela 15706, Spain
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1998年 / 326卷 / 10期
关键词
D O I
10.1016/S0764-4442(98)80238-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we show that a class of high frequency modes of the three-dimensional linearized elasticity system in a thin rod and their associated eigenfunctions converge, as the thickness of the rods goes to zero, and the limit model is a coupled one-dimensional problem giving the classical equations for torsion and stretching vibrations. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:1255 / 1260
页数:6
相关论文
共 7 条
  • [1] [Anonymous], 1996, Handbook of Numerical Analysis, Volume 4: Finite Element Methods (Part 2)-Numerical Methods for Solids (Part 2)
  • [2] Castro C, 1996, CR ACAD SCI I-MATH, V322, P1043
  • [3] TWO-DIMENSIONAL APPROXIMATIONS OF 3-DIMENSIONAL EIGENVALUE PROBLEMS IN PLATE-THEORY
    CIARLET, PG
    KESAVAN, S
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 26 (02) : 145 - 172
  • [4] IRAGO H, IN PRESS MATH MOD ME
  • [5] KERDID N, 1993, CR ACAD SCI I-MATH, V316, P755
  • [6] KERDID N, 1997, MATH MODEL NUMER ANA, V31, P1
  • [7] LEDRET H, 1989, J MATH PURE APPL, V68, P365