An Exhaustive Solution of Power System Unit Commitment Problem Using Enhanced Binary Salp Swarm Optimization Algorithm

被引:7
|
作者
Venkatesh Kumar, C. [1 ]
Ramesh Babu, M. [1 ]
机构
[1] St Josephs Coll Engn, Dept Elect & Elect Engn, Old Mamallapuram Rd, Chennai 600119, Tamil Nadu, India
关键词
Adaptive binary salp swarm algorithm; Prohibited operating zones; Unit commitment; Multi-objective unit commitment; Ramp-rate limits; Valve-point effect; LAGRANGIAN-RELAXATION; PROGRAMMING APPROACH; DISPATCH;
D O I
10.1007/s42835-021-00889-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Unit Commitment (UC) problem is a combinatorial optimization problem in power system operation with the key focus on achieving optimum commitment schedule of the generators for forecasted demand and spinning reserve. The computational complexity to determine a solution for the UC problem grows exponentially with the number of generators and system constraints. In this paper, the UC problem is formulated as a mixed-integer optimization problem and solved using novel Adaptive Binary Salp Swarm Algorithm by considering minimum up/down time limits, prohibited operating zones, spinning reserve, valve-point effect, and ramp rate limits. The proposed algorithm is tested for efficiency on the standard 10-unit system, 26-unit RTS system, 54-unit IEEE 118-bus system, 20, 40, 60, 80, and 100-unit systems. Additionally, an Adaptive Multi-Objective Binary Salp Swarm Optimization Algorithm is proposed for resolving the bi-objective emission constrained UC problem and tested using a 10-unit system. The obtained results are analyzed for positive differences against other algorithms from the literature. The statistical analysis exhibits the efficiency of the proposed method for large scale real-time systems.
引用
收藏
页码:395 / 413
页数:19
相关论文
共 50 条