An Exhaustive Solution of Power System Unit Commitment Problem Using Enhanced Binary Salp Swarm Optimization Algorithm

被引:7
作者
Venkatesh Kumar, C. [1 ]
Ramesh Babu, M. [1 ]
机构
[1] St Josephs Coll Engn, Dept Elect & Elect Engn, Old Mamallapuram Rd, Chennai 600119, Tamil Nadu, India
关键词
Adaptive binary salp swarm algorithm; Prohibited operating zones; Unit commitment; Multi-objective unit commitment; Ramp-rate limits; Valve-point effect; LAGRANGIAN-RELAXATION; PROGRAMMING APPROACH; DISPATCH;
D O I
10.1007/s42835-021-00889-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Unit Commitment (UC) problem is a combinatorial optimization problem in power system operation with the key focus on achieving optimum commitment schedule of the generators for forecasted demand and spinning reserve. The computational complexity to determine a solution for the UC problem grows exponentially with the number of generators and system constraints. In this paper, the UC problem is formulated as a mixed-integer optimization problem and solved using novel Adaptive Binary Salp Swarm Algorithm by considering minimum up/down time limits, prohibited operating zones, spinning reserve, valve-point effect, and ramp rate limits. The proposed algorithm is tested for efficiency on the standard 10-unit system, 26-unit RTS system, 54-unit IEEE 118-bus system, 20, 40, 60, 80, and 100-unit systems. Additionally, an Adaptive Multi-Objective Binary Salp Swarm Optimization Algorithm is proposed for resolving the bi-objective emission constrained UC problem and tested using a 10-unit system. The obtained results are analyzed for positive differences against other algorithms from the literature. The statistical analysis exhibits the efficiency of the proposed method for large scale real-time systems.
引用
收藏
页码:395 / 413
页数:19
相关论文
共 61 条
[1]  
Babu MR, 2012, INT REV ELECTR ENG-I, V7, P4271
[2]  
Balci H. H., 2004, International Journal of Applied Mathematics and Computer Science, V14, P411
[3]  
BAS E, 2020, SOFT COMPUT
[4]   Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II [J].
Basu, M. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2008, 30 (02) :140-149
[5]  
Burns RM, 1975, PROCEEDING IEEE POWE, P453
[6]   Thermal unit commitment using binary/real coded artificial bee colony algorithm [J].
Chandrasekaran, K. ;
Hemamalini, S. ;
Simon, Sishaj P. ;
Padhy, Narayana Prasad .
ELECTRIC POWER SYSTEMS RESEARCH, 2012, 84 (01) :109-119
[7]  
Chang GW, 2004, 2004 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1 AND 2, P221
[8]   Unit commitment by Lagrangian relaxation and genetic algorithms [J].
Cheng, CP ;
Liu, CW ;
Liu, GC .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) :707-714
[9]  
Coello CAC, 2004, IEEE T EVOLUT COMPUT, V8, P256, DOI [10.1109/TEVC.2004.826067, 10.1109/tevc.2004.826067]
[10]   A BRANCH-AND-BOUND ALGORITHM FOR UNIT COMMITMENT [J].
COHEN, AI ;
YOSHIMURA, M .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1983, 102 (02) :444-451