Silver-Based Nanodisk Codes

被引:47
作者
Banholzer, Matthew J. [1 ,3 ]
Osberg, Kyle D. [2 ,3 ]
Li, Shuzhou [1 ,3 ]
Mangelson, Bryan F. [1 ,3 ]
Schatz, George C. [1 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
encoding; tagging; surface-enhanced Raman scattering; SERS; on-wire lithography; biodetection; ON-WIRE LITHOGRAPHY; DNA; NANOSTRUCTURES; NANOPARTICLES; NANOBARCODES; PARTICLES; NANOWIRES; BARCODES; ARRAY; GOLD;
D O I
10.1021/nn101231u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a novel method for synthesizing silver-based nanodisk code (NDC) structures using on-wire lithography, where we employ milder synthetic and etching conditions than those used to synthesize the analogous gold structures. The silver structures exhibit stronger surface-enhanced Raman scattering signals than their Au counterparts at 633 and 532 nm excitation and, therefore, lead to lower limits of detection when used in the context of DNA-based detection assays. Finally, use of two enhancing nanostructured materials in one disk code dramatically increases the information storage density for encoding. For example, a disk code consisting of 5 gold disk pairs has 13 unique combinations of enhancing patterns, while one with 5 disk pairs that can be either gold or silver has 98.
引用
收藏
页码:5446 / 5452
页数:7
相关论文
共 38 条
  • [1] The use of nanocrystals in biological detection
    Alivisatos, P
    [J]. NATURE BIOTECHNOLOGY, 2004, 22 (01) : 47 - 52
  • [2] SERS-Based Diagnosis and Biodetection
    Alvarez-Puebla, Ramon A.
    Liz-Marzan, Luis M.
    [J]. SMALL, 2010, 6 (05) : 604 - 610
  • [3] Electrochemical approach to and the physical consequences of preparing nanostructures from gold nanorods with smooth ends
    Banholzer, Matthew J.
    Li, Shuzhou
    Ketter, Jacob B.
    Rozkiewicz, Dorota I.
    Schatz, George C.
    Mirkin, Chad A.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (40) : 15729 - 15734
  • [4] Rationally designed nanostructures for surface-enhanced Raman spectroscopy
    Banholzer, Matthew J.
    Millstone, Jill E.
    Qin, Lidong
    Mirkin, Chad A.
    [J]. CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 885 - 897
  • [5] On-wire lithography: synthesis, encoding and biological applications
    Banholzer, Matthew J.
    Qin, Lidong
    Millstone, Jill E.
    Osberg, Kyle D.
    Mirkin, Chad A.
    [J]. NATURE PROTOCOLS, 2009, 4 (06) : 838 - 848
  • [6] Microparticle encoding technologies for high-throughput multiplexed suspension assays
    Birtwell, Sam
    Morgan, Hywel
    [J]. INTEGRATIVE BIOLOGY, 2009, 1 (5-6) : 345 - 362
  • [7] Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection
    Cao, YWC
    Jin, RC
    Mirkin, CA
    [J]. SCIENCE, 2002, 297 (5586) : 1536 - 1540
  • [8] Qdot nanobarcodes for multiplexed gene expression analysis
    Eastman, P. Scott
    Ruan, Weiming
    Doctolero, Michael
    Nuttall, Rachel
    De Feo, Gianfranco
    Park, Jennifer S.
    Chu, Julia S. F.
    Cooke, Patrick
    Gray, Joe W.
    Li, Song
    Chen, Fanqing Frank
    [J]. NANO LETTERS, 2006, 6 (05) : 1059 - 1064
  • [9] Intracellular Polysilicon Barcodes for Cell Tracking
    Fernandez-Rosas, Elisabet
    Gomez, Rodrigo
    Ibanez, Elena
    Barrios, Leonardo
    Duch, Marta
    Esteve, Jaume
    Nogues, Carme
    Plaza, Jose Antonio
    [J]. SMALL, 2009, 5 (21) : 2433 - 2439
  • [10] Decoding randomly ordered DNA arrays
    Gunderson, KL
    Kruglyak, S
    Graige, MS
    Garcia, F
    Kermani, BG
    Zhao, CF
    Che, DP
    Dickinson, T
    Wickham, E
    Bierle, J
    Doucet, D
    Milewski, M
    Yang, R
    Siegmund, C
    Haas, J
    Zhou, LX
    Oliphant, A
    Fan, JB
    Barnard, S
    Chee, MS
    [J]. GENOME RESEARCH, 2004, 14 (05) : 870 - 877