Magnetic-field generation by the ablative nonlinear Rayleigh-Taylor instability

被引:4
作者
Nilson, Philip M. [1 ,2 ]
Gao, L. [1 ,3 ]
Igumenshchev, I. V. [1 ]
Fiksel, G. [1 ]
Yan, R. [1 ,2 ,3 ]
Davies, J. R. [1 ,2 ,3 ]
Martinez, D. [4 ]
Smalyuk, V. A. [4 ]
Haines, M. G. [5 ]
Blackman, E. G. [1 ,6 ]
Froula, D. H. [1 ]
Betti, R. [1 ,2 ,3 ,6 ]
Meyerhofer, D. D. [1 ,2 ,3 ,6 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[6] Univ Rochester, Dept Phys, Rochester, NY 14623 USA
关键词
INERTIAL CONFINEMENT FUSION; SCALING LAWS; OMEGA LASER;
D O I
10.1017/S0022377814001093
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh-Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Two-dimensional thin shell model for the nonlinear Rayleigh-Taylor instability in spherical geometry
    Zhao, K. G.
    Xue, C.
    Wang, L. F.
    Ye, W. H.
    Wu, J. F.
    Ding, Y. K.
    Zhang, W. Y.
    He, X. T.
    PHYSICS OF PLASMAS, 2019, 26 (02)
  • [42] Rayleigh-Taylor instability in accelerated elastic-solid slabs
    Piriz, S. A.
    Piriz, A. R.
    Tahir, N. A.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [43] Hydrodynamic scaling of the deceleration-phase Rayleigh-Taylor instability
    Bose, A.
    Woo, K. M.
    Nora, R.
    Betti, R.
    PHYSICS OF PLASMAS, 2015, 22 (07)
  • [44] Experimental study of Rayleigh-Taylor instability with a complex initial perturbation
    Olson, D. H.
    Jacobs, J. W.
    PHYSICS OF FLUIDS, 2009, 21 (03)
  • [45] Numerical simulation of the three-dimensional Rayleigh-Taylor instability
    Lee, Hyun Geun
    Kim, Junseok
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (08) : 1466 - 1474
  • [46] Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions
    Zhang, H.
    Betti, R.
    Yan, R.
    Zhao, D.
    Shvarts, D.
    Aluie, H.
    PHYSICAL REVIEW LETTERS, 2018, 121 (18)
  • [47] Reduced ablative Rayleigh-Taylor growth measurements in indirectly driven laminated foils
    Huser, G.
    Casner, A.
    Masse, L.
    Liberatore, S.
    Galmiche, D.
    Jacquet, L.
    Theobald, M.
    PHYSICS OF PLASMAS, 2011, 18 (01)
  • [48] Experimental data processing on laser drive Rayleigh-Taylor instability
    Jia G.
    Fu S.
    Dong J.
    Shu H.
    Xiong J.
    Gu Y.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2010, 37 (01): : 200 - 204
  • [49] Intuitive calculation of the relativistic Rayleigh-Taylor instability linear growth rate
    Bret, Antoine
    LASER AND PARTICLE BEAMS, 2011, 29 (02) : 255 - 257
  • [50] Three-dimensional elastic Rayleigh-Taylor instability at the cylindrical interface
    Zeng, R. H.
    Wang, Q. Y.
    Sun, Y. B.
    Zhu, S. L.
    PHYSICS OF PLASMAS, 2024, 31 (11)