Numerical integration based on Laguerre-Gauss interpolation

被引:23
作者
Ben-yu, Guo [1 ]
Zhong-qing, Wang [1 ]
机构
[1] Shanghai Normal Univ, E Inst Shanghai Univ, Div Computat Sci, Dept Math, Shanghai 200234, Peoples R China
基金
美国国家科学基金会;
关键词
Runge-Kutta method; modified Laguerre-Gauss interpolation; ordinary differential equations;
D O I
10.1016/j.cma.2006.10.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we propose two efficient numerical integrators for ordinary differential equations based on modified Laguerre-Gauss interpolations. The global convergence of proposed algorithms is proved. Numerical results demonstrate the spectral accuracy of these new schemes and agree well with the theoretical analysis. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3726 / 3741
页数:16
相关论文
共 25 条
[1]  
[Anonymous], 2003, SYMPLETIC GEOMETRIC
[2]  
[Anonymous], 1987, SOLVING ORDINARY DIF, DOI DOI 10.1007/978-3-662-12607-3
[3]  
Babuska I., 1989, NUMER METH PART D E, V4, P363, DOI DOI 10.1002/num.1690050407
[4]  
BENYU G, 2007, APPL NUMER MATH, V57, P455
[5]  
BENYU G, 2006, SIAM J NUMER ANAL, V43, P2567
[6]  
BENYU G, 2005, J COMPUT APPL MATH, V181, P342
[7]  
BENYU G, IN PRESS MATH COMPUT
[8]  
BENYU G, 2003, MATH COMPUT, V73, P95
[9]  
Butcher J. C., 1987, The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods
[10]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&