The Role of China in the Global Spread of the Current Cholera Pandemic

被引:68
作者
Didelot, Xavier [1 ]
Pang, Bo [2 ,3 ]
Zhou, Zhemin [4 ,5 ,6 ]
McCann, Angela [4 ,5 ]
Ni, Peixiang [7 ]
Li, Dongfang [7 ]
Achtman, Mark [4 ,5 ,6 ]
Kan, Biao [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Infect Dis Epidemiol, London, England
[2] Chinese Ctr Dis Control & Prevent, Natl Inst Commun Dis Control & Prevent, State Key Lab Infect Dis Prevent & Control, Beijing, Peoples R China
[3] Collaborat Innovat Ctr Diag & Treatment Infect Di, Hangzhou, Zhejiang, Peoples R China
[4] Natl Univ Ireland Univ Coll Cork, Environm Res Inst, Cork, Ireland
[5] Natl Univ Ireland Univ Coll Cork, Dept Microbiol, Cork, Ireland
[6] Univ Warwick, Warwick Med Sch, Coventry CV4 7AL, W Midlands, England
[7] BGI Shenzhen, BGI Tianjin, Binhai Genom Inst, Tianjin, Peoples R China
基金
英国生物技术与生命科学研究理事会;
关键词
HIGH MUTATION-RATES; VIBRIO-CHOLERAE; ESCHERICHIA-COLI; COMPARATIVE GENOMICS; EVOLUTION; OUTBREAK; SEQUENCE; IDENTIFICATION; TRANSMISSION; FREQUENCIES;
D O I
10.1371/journal.pgen.1005072
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Epidemics and pandemics of cholera, a severe diarrheal disease, have occurred since the early 19th century and waves of epidemic disease continue today. Cholera epidemics are caused by individual, genetically monomorphic lineages of Vibrio cholerae: the ongoing seventh pandemic, which has spread globally since 1961, is associated with lineage L2 of biotype El Tor. Previous genomic studies of the epidemiology of the seventh pandemic identified three successive sub-lineages within L2, designated waves 1 to 3, which spread globally from the Bay of Bengal on multiple occasions. However, these studies did not include samples from China, which also experienced multiple epidemics of cholera in recent decades. We sequenced the genomes of 71 strains isolated in China between 1961 and 2010, as well as eight from other sources, and compared them with 181 published genomes. The results indicated that outbreaks in China between 1960 and 1990 were associated with wave 1 whereas later outbreaks were associated with wave 2. However, the previously defined waves overlapped temporally, and are an inadequate representation of the shape of the global genealogy. We therefore suggest replacing them by a series of tightly delineated clades. Between 1960 and 1990 multiple such clades were imported into China, underwent further microevolution there and then spread to other countries. China was thus both a sink and source during the pandemic spread of V. cholerae, and needs to be included in reconstructions of the global patterns of spread of cholera.
引用
收藏
页数:14
相关论文
共 39 条
[1]   Quantifying Global International Migration Flows [J].
Abel, Guy J. ;
Sander, Nikola .
SCIENCE, 2014, 343 (6178) :1520-1522
[2]  
[Anonymous], 1959, CHOLERA, P51
[3]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[4]  
Barua Dhiman, 1992, P1
[5]   The Origin of the Haitian Cholera Outbreak Strain. [J].
Chin, Chen-Shan ;
Sorenson, Jon ;
Harris, Jason B. ;
Robins, William P. ;
Charles, Richelle C. ;
Jean-Charles, Roger R. ;
Bullard, James ;
Webster, Dale R. ;
Kasarskis, Andrew ;
Peluso, Paul ;
Paxinos, Ellen E. ;
Yamaichi, Yoshiharu ;
Calderwood, Stephen B. ;
Mekalanos, John J. ;
Schadt, Eric E. ;
Waldor, Matthew K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 364 (01) :33-42
[6]   Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae [J].
Chun, Jongsik ;
Grim, Christopher J. ;
Hasan, Nur A. ;
Lee, Je Hee ;
Choi, Seon Young ;
Haley, Bradd J. ;
Taviani, Elisa ;
Jeon, Yoon-Seong ;
Kim, Dong Wook ;
Lee, Jae-Hak ;
Brettin, Thomas S. ;
Bruce, David C. ;
Challacombe, Jean F. ;
Detter, J. Chris ;
Han, Cliff S. ;
Munk, A. Christine ;
Chertkov, Olga ;
Meincke, Linda ;
Saunders, Elizabeth ;
Walters, Ronald A. ;
Huq, Anwar ;
Nair, G. Balakrish ;
Colwell, Rita R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (36) :15442-15447
[7]   Rapid Pneumococcal Evolution in Response to Clinical Interventions [J].
Croucher, Nicholas J. ;
Harris, Simon R. ;
Fraser, Christophe ;
Quail, Michael A. ;
Burton, John ;
van der Linden, Mark ;
McGee, Lesley ;
von Gottberg, Anne ;
Song, Jae Hoon ;
Ko, Kwan Soo ;
Pichon, Bruno ;
Baker, Stephen ;
Parry, Christopher M. ;
Lambertsen, Lotte M. ;
Shahinas, Dea ;
Pillai, Dylan R. ;
Mitchell, Timothy J. ;
Dougan, Gordon ;
Tomasz, Alexander ;
Klugman, Keith P. ;
Parkhill, Julian ;
Hanage, William P. ;
Bentley, Stephen D. .
SCIENCE, 2011, 331 (6016) :430-434
[8]   Second-Pandemic Strain of Vibrio cholerae from the Philadelphia Cholera Outbreak of 1849 [J].
Devault, Alison M. ;
Golding, G. Brian ;
Waglechner, Nicholas ;
Enk, Jacob M. ;
Kuch, Melanie ;
Tien, Joseph H. ;
Shi, Mang ;
Fisman, David N. ;
Dhody, Anna N. ;
Forrest, Stephen ;
Bos, Kirsten I. ;
Earn, David J. D. ;
Holmes, Edward C. ;
Poinar, Hendrik N. .
NEW ENGLAND JOURNAL OF MEDICINE, 2014, 370 (04) :334-340
[9]   Inference of bacterial microevolution using multilocus sequence data [J].
Didelot, Xavier ;
Falush, Daniel .
GENETICS, 2007, 175 (03) :1251-1266
[10]   Microevolutionary analysis of Clostridium difficile genomes to investigate transmission [J].
Didelot, Xavier ;
Eyre, David W. ;
Cule, Madeleine ;
Ip, Camilla L. C. ;
Ansari, M. Azim ;
Griffiths, David ;
Vaughan, Alison ;
O'Connor, Lily ;
Golubchik, Tanya ;
Batty, Elizabeth M. ;
Piazza, Paolo ;
Wilson, Daniel J. ;
Bowden, Rory ;
Donnelly, Peter J. ;
Dingle, Kate E. ;
Wilcox, Mark ;
Walker, A. Sarah ;
Crook, Derrick W. ;
Peto, Tim E. A. ;
Harding, Rosalind M. .
GENOME BIOLOGY, 2012, 13 (12) :R118