Anatomical-guided attention enhances unsupervised PET image denoising performance

被引:30
作者
Onishi, Yuya [1 ]
Hashimoto, Fumio [1 ]
Ote, Kibo [1 ]
Ohba, Hiroyuki [1 ]
Ota, Ryosuke [1 ]
Yoshikawa, Etsuji [1 ]
Ouchi, Yasuomi [2 ]
机构
[1] Hamamatsu Photon KK, Cent Res Lab, Hamakita Ku, 5000 Hirakuchi, Hamamatsu, Shizuoka 4348601, Japan
[2] Hamamatsu Univ, Preeminent Med Photon Educ & Res Ctr, Dept Biofunct Imaging, Sch Med,Higashi Ku, 1-20-1 Handayama, Hamamatsu, Shizuoka 4313192, Japan
基金
日本学术振兴会;
关键词
Positron emission tomography; Magnetic resonance; Image denoising; Unsupervised deep learning; Deep image prior; Attention; RECONSTRUCTION; NETWORKS;
D O I
10.1016/j.media.2021.102226
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although supervised convolutional neural networks (CNNs) often outperform conventional alternatives for denoising positron emission tomography (PET) images, they require many low-and high-quality reference PET image pairs. Herein, we propose an unsupervised 3D PET image denoising method based on an anatomical information-guided attention mechanism. The proposed magnetic resonance-guided deep decoder (MR-GDD) utilizes the spatial details and semantic features of MR-guidance im-age more effectively by introducing encoder-decoder and deep decoder subnetworks. Moreover, the spe-cific shapes and patterns of the guidance image do not affect the denoised PET image, because the guidance image is input to the network through an attention gate. In a Monte Carlo simulation of [F-18]fluoro-2-deoxy-D-glucose (FDG), the proposed method achieved the highest peak signal-to-noise ratio and structural similarity (27.92 +/- 0.44 dB/0.886 +/- 0.007), as compared with Gaussian filtering (26.68 +/- 0.10 dB/0.807 +/- 0.004), image guided filtering (27.40 +/- 0.11 dB/0.849 +/- 0.003), deep image prior (DIP) (24.22 +/- 0.43 dB/0.737 +/- 0.017), and MR-DIP (27.65 +/- 0.42 dB/0.879 +/- 0.007). Furthermore, we experimentally visualized the behavior of the optimization process, which is often unknown in un-supervised CNN-based restoration problems. For preclinical (using [F-18]FDG and [C-11]raclopride) and clin-ical (using [F-18]florbetapir) studies, the proposed method demonstrates state-of-the-art denoising per-formance while retaining spatial resolution and quantitative accuracy, despite using a common network architecture for various noisy PET images with 1/10th of the full counts. These results suggest that the proposed MR-GDD can reduce PET scan times and PET tracer doses considerably without impacting pa-tients. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Non-local mean denoising using multiple PET reconstructions [J].
Arabi, Hossein ;
Zaidi, Habib .
ANNALS OF NUCLEAR MEDICINE, 2021, 35 (02) :176-186
[2]   Twenty new digital brain phantoms for creation of validation image data bases [J].
Aubert-Broche, Berengere ;
Griffin, Mark ;
Pike, G. Bruce ;
Evans, Alan C. ;
Collins, D. Louis .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1410-1416
[3]   MR-Guided Kernel EM Reconstruction for Reduced Dose PET Imaging [J].
Bland, James ;
Mehranian, Abolfazl ;
Belzunce, Martin A. ;
Ellis, Sam ;
McGinnity, Colm J. ;
Hammers, Alexander ;
Reader, Andrew J. .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2018, 2 (03) :235-243
[4]   Postreconstruction Nonlocal Means Filtering of Whole-Body PET With an Anatomical Prior [J].
Chan, Chung ;
Fulton, Roger ;
Barnett, Robert ;
Feng, David Dagan ;
Meikle, Steven .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (03) :636-650
[5]   Ultra-Low-Dose 18F-Florbetaben Amyloid PET Imaging Using Deep Learning with Multi-Contrast MRI Inputs [J].
Chen, Kevin T. ;
Gong, Enhao ;
Macruz, Fabiola Bezerra de Carvalho ;
Xu, Junshen ;
Boumis, Athanasia ;
Khalighi, Mehdi ;
Poston, Kathleen L. ;
Sha, Sharon J. ;
Greicius, Michael D. ;
Mormino, Elizabeth ;
Pauly, John M. ;
Srinivas, Shyam ;
Zaharchuk, Greg .
RADIOLOGY, 2019, 290 (03) :649-656
[6]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[7]   Clinically feasible reconstruction of 3D whole-body PET/CT data using blurred anatomical labels [J].
Comtat, C ;
Kinahan, PE ;
Fessler, JA ;
Beyer, T ;
Townsend, DW ;
Defrise, M ;
Michel, C .
PHYSICS IN MEDICINE AND BIOLOGY, 2002, 47 (01) :1-20
[8]   PET image denoising using unsupervised deep learning [J].
Cui, Jianan ;
Gong, Kuang ;
Guo, Ning ;
Wu, Chenxi ;
Meng, Xiaxia ;
Kim, Kyungsang ;
Zheng, Kun ;
Wu, Zhifang ;
Fu, Liping ;
Xu, Baixuan ;
Zhu, Zhaohui ;
Tian, Jiahe ;
Liu, Huafeng ;
Li, Quanzheng .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2780-2789
[9]   Attention Branch Network: Learning of Attention Mechanism for Visual Explanation [J].
Fukui, Hiroshi ;
Hirakawa, Tsubasa ;
Yamashita, Takayoshi ;
Fujiyoshi, Hironobu .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10697-10706
[10]   PET Image Denoising Using a Deep Neural Network Through Fine Tuning [J].
Gong, Kuang ;
Guan, Jiahui ;
Liu, Chih-Chieh ;
Qi, Jinyi .
IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2019, 3 (02) :153-161