A novel reverse sparse model utilizing the spatio-temporal relationship of target templates for object tracking

被引:9
作者
Li, Meihui [1 ]
Peng, Zhenming [1 ]
Chen, Yingpin [1 ]
Wang, Xiaoyang [1 ]
Peng, Lingbing [1 ]
Wang, Zhuoran [1 ]
Yuan, Guohui [1 ]
He, Yanmin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Object tracking; Reverse sparse representation; Multi-task learning; Spatio-temporal relationship; Particle filter; Smooth l(0,2) algorithm; ROBUST VISUAL TRACKING; APPEARANCE MODEL; REPRESENTATION; RECOGNITION;
D O I
10.1016/j.neucom.2018.10.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the particle filter framework, the sparse representation method models object tracking by predicting the likelihood of particles with respect to target templates. However, in most tracking methods, the spatio-temporal relationships of different templates have been neglected. This method applies the reverse sparse representation in multi-task learning, thus takes advantage of the temporal information and spatial continuity of a series of templates. Adding a predesigned weight matrix can reflect the temporal information, and make the new entrant templates have a greater influence on atoms' selection. To solve the locally weighted reverse joint sparse model (LWRJM), we design a modified smooth 10, 2 algorithm which requires only a few iterations. The obtained sparse coding coefficients are mapped to a binary indicator vector by a statistic strategy, which is helpful to eliminate the contributions of the corrupted blocks and preserve the uncorrupted ones. Comparing with other state-of-the-art tracking methods on 100 challenging benchmark image sequences, the proposed tracker (LWRJM) outperforms other methods in both qualitative and quantitative evaluations. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 57 条
  • [1] Adam A., 2006, IEEE C COMP VIS PATT, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
  • [2] [Anonymous], 2016, CVPR
  • [3] Babenko B, 2009, PROC CVPR IEEE, P983, DOI 10.1109/CVPRW.2009.5206737
  • [4] Structured Sparsity through Convex Optimization
    Bach, Francis
    Jenatton, Rodolphe
    Mairal, Julien
    Obozinski, Guillaume
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 450 - 468
  • [5] Bao CL, 2012, PROC CVPR IEEE, P1830, DOI 10.1109/CVPR.2012.6247881
  • [6] A Review of Computer Vision Techniques for the Analysis of Urban Traffic
    Buch, Norbert
    Velastin, Sergio A.
    Orwell, James
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2011, 12 (03) : 920 - 939
  • [7] Human behavior analysis in video surveillance: A Social Signal Processing perspective
    Cristani, Marco
    Raghavendra, R.
    Del Bue, Alessio
    Murino, Vittorio
    [J]. NEUROCOMPUTING, 2013, 100 : 86 - 97
  • [8] Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking
    Danelljan, Martin
    Robinson, Andreas
    Khan, Fahad Shahbaz
    Felsberg, Michael
    [J]. COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 472 - 488
  • [9] Adaptive Color Attributes for Real-Time Visual Tracking
    Danelljan, Martin
    Khan, Fahad Shahbaz
    Felsberg, Michael
    van de Weijer, Joost
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1090 - 1097
  • [10] Sparse Multi-View Consistency for Object Segmentation
    Djelouah, Abdelaziz
    Franco, Jean-Sebastien
    Boyer, Edmond
    Le Clerc, Francois
    Perez, Patrick
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1890 - 1903