Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g - 2)μ with large-Nc Regge models

被引:306
作者
Colangelo, Gilberto [1 ]
Hagelstein, Franziska [1 ]
Hoferichter, Martin [1 ,2 ]
Laub, Laetitia [1 ]
Stoffer, Peter [3 ]
机构
[1] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr Fundamental Phys, Sidlerstr 5, CH-3012 Bern, Switzerland
[2] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
[3] Univ Calif San Diego, Dept Phys, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
瑞士国家科学基金会;
关键词
Chiral Lagrangians; Effective Field Theories; Nonperturbative Effects; Precision QED; ANOMALOUS MAGNETIC-MOMENT; QUANTUM CHROMODYNAMICS; INVARIANT AMPLITUDES; 2-PHOTON COLLISIONS; EXCLUSIVE PROCESSES; DECAY CONSTANT; FORM-FACTORS; SUM-RULES; RENORMALIZATION; PION;
D O I
10.1007/JHEP03(2020)101
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
While the low-energy part of the hadronic light-by-light (HLbL) tensor can be constrained from data using dispersion relations, for a full evaluation of its contribution to the anomalous magnetic moment of the muon (g - 2)(mu) also mixed- and high-energy regions need to be estimated. Both can be addressed within the operator product expansion (OPE), either for configurations where all photon virtualities become large or one of them remains finite. Imposing such short-distance constraints (SDCs) on the HLbL tensor is thus a major aspect of a model-independent approach towards HLbL scattering. Here, we focus on longitudinal SDCs, which concern the amplitudes containing the pseudoscalar-pole contributions from pi(0), eta, eta '. Since these conditions cannot be fulfilled by a finite number of pseudoscalar poles, we consider a tower of excited pseudoscalars, constraining their masses and transition form factors from Regge theory, the OPE, and phenomenology. Implementing a matching of the resulting expressions for the HLbL tensor onto the perturbative QCD quark loop, we are able to further constrain our calculation and significantly reduce its model dependence. We find that especially for the pi(0) the corresponding increase of the HLbL contribution is much smaller than previous prescriptions in the literature would imply. Overall, we estimate that longitudinal SDCs increase the HLbL contribution by Delta a mu LSDC=13x 10(-11). This number does not include the contribution from the charm quark, for which we find a mu c-quark = 3(1) x 10(-11).
引用
收藏
页数:89
相关论文
共 173 条
[1]   ANALYSIS OF THE JP =1+ AND 0- 3-PION SYSTEMS [J].
AARON, R ;
LONGACRE, RS .
PHYSICAL REVIEW D, 1981, 24 (05) :1207-1217
[2]  
Abbiendi G, 2017, EUR PHYS J C, V77, DOI 10.1140/epjc/s10052-017-4633-z
[3]   A new approach for measuring the muon anomalous magnetic moment and electric dipole moment [J].
Abe, M. ;
Bae, S. ;
Beer, G. ;
Bunce, G. ;
Choi, H. ;
Choi, S. ;
Chung, M. ;
da Silva, W. ;
Eidelman, S. ;
Finger, M. ;
Fukao, Y. ;
Fukuyama, T. ;
Haciomeroglu, S. ;
Hasegawa, K. ;
Hayasaka, K. ;
Hayashizaki, N. ;
Hisamatsu, H. ;
Iijima, T. ;
Iinuma, H. ;
Ikeda, H. ;
Ikeno, M. ;
Inami, K. ;
Ishida, K. ;
Itahashi, T. ;
Iwasaki, M. ;
Iwashita, Y. ;
Iwata, Y. ;
Kadono, R. ;
Kamal, S. ;
Kamitani, T. ;
Kanda, S. ;
Kapusta, F. ;
Kawagoe, K. ;
Kawamura, N. ;
Kim, B. ;
Kim, Y. ;
Kishishita, T. ;
Kitamura, R. ;
Ko, H. ;
Kohriki, T. ;
Kondo, Y. ;
Kume, T. ;
Lee, M. J. ;
Lee, S. ;
Lee, W. ;
Marshall, G. M. ;
Matsuda, Y. ;
Mibe, T. ;
Miyake, Y. ;
Murakami, T. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2019, 2019 (05)
[4]  
Abele A, 2001, EUR PHYS J C, V19, P667, DOI 10.1007/s100520100601
[5]  
Abramowitz Milton, 1972, HDB MATH FUNCTIONS
[6]   Resonance formation in the pi(+) pi(-) pi(0) final state in two-photon collisions [J].
Acciarri, M ;
Adriani, O ;
AguilarBenitez, M ;
Ahlen, S ;
Alcaraz, J ;
Alemanni, G ;
Allaby, J ;
Aloisio, A ;
Alverson, G ;
Alviggi, MG ;
Ambrosi, G ;
Anderhub, H ;
Andreev, VP ;
Angelescu, T ;
Anselmo, F ;
Arefiev, A ;
Azemoon, T ;
Aziz, T ;
Bagnaia, P ;
Baksay, L ;
Ball, RC ;
Banerjee, S ;
Banerjee, S ;
Banicz, K ;
Barczyk, A ;
Barillere, R ;
Barone, L ;
Bartalini, P ;
Baschirotto, A ;
Basile, M ;
Battiston, R ;
Bay, A ;
Becattini, F ;
Becker, U ;
Behner, F ;
Berdugo, J ;
Berges, P ;
Bertucci, B ;
Betev, BL ;
Bhattacharya, S ;
Biasini, M ;
Biland, A ;
Bilei, GM ;
Blaising, JJ ;
Blyth, SC ;
Bobbink, GJ ;
Bock, R ;
Bohm, A ;
Boldizsar, L ;
Borgia, B .
PHYSICS LETTERS B, 1997, 413 (1-2) :147-158
[7]   Light resonances in KS(0)K±πinverted perpendicular and ηπ+π- final states in γγ collisions at LEP [J].
Acciarri, M ;
Achard, P ;
Adriani, O ;
Aguilar-Benitez, M ;
Alcaraz, J ;
Alemanni, G ;
Allaby, J ;
Aloisio, A ;
Alviggi, MG ;
Ambrosi, G ;
Anderhub, H ;
Andreev, VP ;
Angelescu, T ;
Anselmo, F ;
Arefiev, A ;
Azemoon, T ;
Aziz, T ;
Bagnaia, P ;
Bajo, A ;
Baksay, L ;
Balandras, A ;
Baldew, SV ;
Banerjee, S ;
Banerjee, S ;
Barczyk, A ;
Barillère, R ;
Bartalini, P ;
Basile, M ;
Batalova, N ;
Battiston, R ;
Bay, A ;
Becattini, F ;
Becker, U ;
Behner, F ;
Bellucci, L ;
Berbeco, R ;
Berdugo, J ;
Berges, P ;
Bertucci, B ;
Betev, BL ;
Bhattacharya, S ;
Biasini, M ;
Biland, A ;
Blaising, JJ ;
Blyth, SC ;
Bobbink, GJ ;
Böhm, A ;
Boldizsar, L ;
Borgia, B ;
Bourilkov, D .
PHYSICS LETTERS B, 2001, 501 (1-2) :1-11
[8]   Measurement of η′(958) formation in two-photon collisions at LEP1 [J].
Acciarri, M ;
Adriani, O ;
Aguilar-Benitez, M ;
Ahlen, S ;
Alcaraz, J ;
Alemanni, G ;
Allaby, J ;
Aloisio, A ;
Alverson, G ;
Alviggi, MG ;
Ambrosi, G ;
Anderhub, H ;
Andreev, VP ;
Angelescu, T ;
Anselmo, F ;
Arefiev, A ;
Azemoon, T ;
Aziz, T ;
Bagnaia, P ;
Baksay, L ;
Ball, RC ;
Banerjee, S ;
Banerjee, S ;
Banicz, K ;
Barczyk, A ;
Barillere, R ;
Barone, L ;
Bartalini, P ;
Baschirotto, A ;
Basile, M ;
Battiston, R ;
Bay, A ;
Becattini, F ;
Becker, U ;
Behner, F ;
Berdugo, J ;
Berges, P ;
Bertucci, B ;
Betev, BL ;
Bhattacharya, S ;
Biasini, M ;
Biland, A ;
Bilei, GM ;
Blaising, JJ ;
Blyth, SC ;
Bobbink, GJ ;
Bock, R ;
Bohm, A ;
Boldizsar, L ;
Borgia, B .
PHYSICS LETTERS B, 1998, 418 (3-4) :399-410
[9]   f1 (1285) formation in two-photon collisions at LEP [J].
Achard, P ;
Adriani, O ;
Aguilar-Benitez, M ;
Alcaraz, J ;
Alemanni, G ;
Allaby, J ;
Aloisio, A ;
Alviggi, MG ;
Anderhub, H ;
Andreev, VP ;
Anselmo, F ;
Arefiev, A ;
Azemoon, T ;
Aziz, T ;
Bagnaia, P ;
Bajo, A ;
Baksay, G ;
Baksay, L ;
Baldew, SV ;
Banerjee, S ;
Banerjee, S ;
Barczyk, A ;
Barillère, R ;
Bartalini, P ;
Basile, M ;
Batalova, N ;
Battiston, R ;
Bay, A ;
Becattini, F ;
Becker, U ;
Behner, F ;
Bellucci, L ;
Berbeco, R ;
Berdugo, J ;
Berges, P ;
Bertucci, B ;
Betev, BL ;
Biasini, M ;
Biglietti, M ;
Biland, A ;
Blaising, JJ ;
Blyth, SC ;
Bobbink, GJ ;
Böhm, A ;
Boldizsar, L ;
Borgia, B ;
Bottai, S ;
Bourilkov, D ;
Bourquin, M ;
Braccini, S .
PHYSICS LETTERS B, 2002, 526 (3-4) :269-277
[10]   ABSENCE OF HIGHER-ORDER CORRECTIONS IN ANOMALOUS AXIAL-VECTOR DIVERGENCE EQUATION [J].
ADLER, SL ;
BARDEEN, WA .
PHYSICAL REVIEW, 1969, 182 (05) :1517-&