Kaplansky Density and Kadison Transitivity Theorems for irreducible representations of real C*-algebras

被引:1
作者
Boersema, Jeffrey L. [1 ]
机构
[1] Seattle Univ, Dept Math, Seattle, WA 98122 USA
关键词
real C*-algebra; irreducible * representation; transitivity;
D O I
10.1007/s10114-005-0825-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove analogs of the Kaplansky Density Theorem and the Kadison Transitivity Theorem for irreducible representations of a real C*-algebra on a real Hilbert space. Specifically, if a C*-algebra is acting irreducibly on a real Hilbert space, then the Hilbert space has either a real, complex, or quaternionic structure with respect to which the density and transitivity theorems hold.
引用
收藏
页码:1827 / 1832
页数:6
相关论文
共 7 条
[1]   The range of united K-theory [J].
Boersema, JL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 235 (02) :702-718
[2]   Real C*-algebras, united KK-theory, and the Universal Coefficient Theorem [J].
Boersema, JL .
K-THEORY, 2004, 33 (02) :107-149
[3]  
LI B, 2003, REAL OPERATORS ALGEB
[4]  
MURPHY GJ, 1990, C ALGEBRAS OPERATOR
[5]  
TEICHMULLER O, 1936, REINE ANGEW MATH, V174, P73
[6]   NORMAL OPERATORS ON QUATERNIONIC HILBERT SPACES [J].
VISWANATH, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 162 (NDEC) :337-+
[7]  
李炳仁, 1995, Acta Mathematica Sinica. New Series, V11, P381, DOI 10.1007/BF02248748