Testing the expanding-contracting polar cap paradigm

被引:4
作者
Sotirelis, Thomas [1 ]
Keller, Mary Ruth [1 ]
Liou, Kan [1 ]
Smith, Daniel [1 ]
Barnes, Robin J. [1 ]
Talaat, Elsayed [2 ]
Baker, Joseph B. H. [3 ]
机构
[1] Johns Hopkins Univ, Appl Phys Lab, Johns Hopkins Rd, Laurel, MD 20723 USA
[2] NASA HQ, Washington, DC USA
[3] Virginia Tech, Dept Comp & Elect Engn, Blacksburg, VA USA
关键词
INTERPLANETARY MAGNETIC-FIELD; ELECTRIC-FIELD; IONOSPHERIC CONVECTION; PARTICLE-PRECIPITATION; NIGHTSIDE IONOSPHERE; PLASMA-FLOW; IMAGE FUV; LATITUDE; BOUNDARY; MAGNETOSPHERE;
D O I
10.1002/2017JA024238
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The expanding-contracting polar cap (ECPC) paradigm is tested. Under the ECPC paradigm ionospheric convection in the polar cap is driven by the combined effects of magnetic field dayside merging and nightside reconnection, as opposed to being mapped down from higher altitudes. The ECPC paradigm is tested by separately examining the cross polar cap potential when the polar cap is expanding versus contracting. The open magnetic flux is estimated from Super Dual Auroral Radar Network (SuperDARN) observations of the convection reversal boundary (CRB) made simultaneously at different local times. Sotirelis et al. (2005) established the CRB as a proxy for the open-closed boundary. The correlation of the ionospheric convection potential, determined from SuperDARN, with solar wind/interplanetary magnetic field (IMF) driving is indeed found to depend on whether the polar cap is expanding or contracting. Specifically, when the polar cap is expanding, ionospheric convection potential correlates best (0.86) with the most recent 10 min of solar wind/IMF driving (versus 0.57 for contracting). When contracting, convection potential correlates best (0.87) with 90 min averages of solar wind/IMF driving (versus 0.51 for expanding). This result is consistent with the expectations of the ECPC paradigm.
引用
收藏
页码:7077 / 7086
页数:10
相关论文
共 50 条
  • [21] Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere
    Borovsky, Joseph E.
    Lavraud, Benoit
    Kuznetsova, Maria M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
  • [22] A Statistical Study of Polar Cap Flow Channels and Their IMF By Dependence
    Herlingshaw, K.
    Baddeley, L. J.
    Oksavik, K.
    Lorentzen, D. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (11)
  • [23] Interhemispheric Survey of Polar Cap Aurora
    Reidy, J. A.
    Fear, R. C.
    Whiter, D. K.
    Lanchester, B.
    Kavanagh, A. J.
    Milan, S. E.
    Carter, J. A.
    Paxton, L. J.
    Zhang, Y.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2018, 123 (09) : 7283 - 7306
  • [24] Unlocking the secrets of polar cap aurora
    Reidy, Jade A.
    [J]. ASTRONOMY & GEOPHYSICS, 2018, 59 (06) : 22 - 25
  • [25] Solar cycle variations in polar cap area measured by the superDARN radars
    Imber, S. M.
    Milan, S. E.
    Lester, M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (10) : 6188 - 6196
  • [26] Does the polar cap disappear under an extended strong northward IMF?
    Zhang, Yongliang
    Paxton, Larry J.
    Newell, Patrick T.
    Meng, Ching-I
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2009, 71 (17-18) : 2006 - 2012
  • [27] Effect of temporal variation rate of cross polar cap potential on the equatorial ionospheric vertical drift: A statistical study
    Xiong Wen
    Xu JiSheng
    Wang Hui
    Xu Liang
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (05) : 1217 - 1223
  • [29] Airglow Patches in the Polar Cap Region: A Review
    Hosokawa, Keisuke
    Zou, Ying
    Nishimura, Yukitoshi
    [J]. SPACE SCIENCE REVIEWS, 2019, 215 (08)
  • [30] Observations of the relationship between ionospheric central polar cap and dayside throat convection velocities, and solar wind/IMF driving
    Bristow, W. A.
    Amata, E.
    Spaleta, J.
    Marcucci, M. F.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2015, 120 (06) : 4684 - 4699