Joint bayesian convolutional sparse coding for image super-resolution

被引:1
|
作者
Ge, Qi [1 ,2 ]
Shao, Wenze [1 ]
Wang, Liqian [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 09期
基金
中国博士后科学基金;
关键词
SPATIAL-RESOLUTION; DICTIONARY; NETWORK; FUSION;
D O I
10.1371/journal.pone.0201463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Multi-Scale Semi-Coupled Convolutional Sparse Coding for the Super-Resolution Reconstruction of Remote Sensing Image
    Chen N.
    Zhang B.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (03): : 382 - 391
  • [42] Super-resolution and joint segmentation in Bayesian framework
    Humblot, F
    Mohammad-Djafari, A
    Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 2005, 803 : 207 - 214
  • [43] Image Super-Resolution Via Sparse Embedding
    Zhu, Qidan
    Sun, Lei
    Cai, Chengtao
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 5673 - 5676
  • [44] Image Super-Resolution With Sparse Neighbor Embedding
    Gao, Xinbo
    Zhang, Kaibing
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (07) : 3194 - 3205
  • [45] Image Super-Resolution Via Sparse Representation
    Yang, Jianchao
    Wright, John
    Huang, Thomas S.
    Ma, Yi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (11) : 2861 - 2873
  • [46] Sparse Support Regression for Image Super-Resolution
    Jiang, Junjun
    Ma, Xiang
    Cai, Zhihua
    Hu, Ruimin
    IEEE Photonics Journal, 2015, 7 (05)
  • [47] Sparse Support Regression for Image Super-Resolution
    Jiang, Junjun
    Ma, Xiang
    Cai, Zhihua
    Hu, Ruimin
    IEEE PHOTONICS JOURNAL, 2015, 7 (05):
  • [48] Using Sparse Coding in Super-resolution Reconstruction for PET
    Ren, X.
    Lee, S. -J.
    2019 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2019,
  • [49] Fast Super-Resolution via Patchwise Sparse Coding
    Ni Hao
    Liu Fanghua
    Ruan Ruolin
    2015 12TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2015, : 1935 - 1939
  • [50] Fast Video Super-Resolution via Sparse Coding
    Dong, Jiaquan
    Zhang, Hong
    Yuan, Ding
    Chen, Hao
    You, Yuhu
    SIXTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2014), 2015, 9443