Joint bayesian convolutional sparse coding for image super-resolution

被引:1
|
作者
Ge, Qi [1 ,2 ]
Shao, Wenze [1 ]
Wang, Liqian [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 09期
基金
中国博士后科学基金;
关键词
SPATIAL-RESOLUTION; DICTIONARY; NETWORK; FUSION;
D O I
10.1371/journal.pone.0201463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Single MR-image super-resolution based on convolutional sparse representation
    Shima Kasiri
    Mehdi Ezoji
    Signal, Image and Video Processing, 2020, 14 : 1525 - 1533
  • [32] Research on the single image super-resolution method based on sparse Bayesian estimation
    Yang, Yong-qiang
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 1505 - 1513
  • [33] Research on the single image super-resolution method based on sparse Bayesian estimation
    Yong-qiang Yang
    Cluster Computing, 2019, 22 : 1505 - 1513
  • [34] Image Super-Resolution via Sparse Coding for Chinese License Plate Recognition
    Ni Hao
    Liu Fanghua
    Ruan Ruolin
    2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2015, : 944 - 948
  • [35] RGB Patch Clustering For Hyperspectral Image Super-resolution Using Sparse Coding
    Sreena, V. G.
    Jiji, C. V.
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 163 - 168
  • [36] A HYBRID WAVELET CONVOLUTION NETWORK WITH SPARSE-CODING FOR IMAGE SUPER-RESOLUTION
    Gao, Xing
    Xiong, Hongkai
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1439 - 1443
  • [37] IMAGE SUPER-RESOLUTION BASED ON SPARSE CODING WITH MULTI-CLASS DICTIONARIES
    Liao, Xiuxiu
    Bai, Kejia
    Zhang, Qian
    Jia, Xiping
    Liu, Shaopeng
    Zhan, Jin
    COMPUTING AND INFORMATICS, 2019, 38 (06) : 1301 - 1319
  • [38] Sparse Coding with a Coupled Dictionary Learning Approach for Textual Image Super-Resolution
    Walha, Rim
    Drira, Fadoua
    Lebourgeois, Franck
    Garcia, Christophe
    Alimi, Adel M.
    2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 4459 - 4464
  • [39] Single Image Super-Resolution Reconstruction via Combination Mapping with Sparse Coding
    Ren, Kun
    Yang, Yuqing
    Meng, Lisha
    PROCEEDINGS OF 2017 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC 2017), 2017, : 200 - 204
  • [40] Greedy regression in sparse coding space for single-image super-resolution
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (02) : 148 - 159