Quantum Boltzmann equation for bilayer graphene

被引:12
作者
Nguyen, Dung X. [1 ]
Wagner, Glenn [1 ]
Simon, Steven H. [1 ]
机构
[1] Rudolf Peierls Ctr Theoret Phys, Parks Rd, Oxford OX1 3PU, England
基金
英国工程与自然科学研究理事会;
关键词
BROKEN-SYMMETRY STATES; RESISTANCE; TRANSPORT;
D O I
10.1103/PhysRevB.101.035117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
AB-stacked bilayer graphene has massive electron and holelike excitations with zero gap in the nearest-neighbor hopping approximation. In equilibrium, the quasiparticle occupation approximately follows the usual Fermi-Dirac distribution. In this paper we consider perturbing this equilibrium distribution so as to determine DC transport coefficients near charge neutrality. We consider the regime beta vertical bar mu vertical bar less than or similar to 1 (with beta the inverse temperature and mu the chemical potential) where there is not a well-formed Fermi surface. Starting from the Kadanoff-Baym equations, we obtain the quantum Boltzmann equation of the electron and hole distribution functions when the system is weakly perturbed out of equilibrium. The effects of phonons, disorder, and boundary scattering for finite-sized systems are incorporated through a generalized collision integral. The transport coefficients, including the electrical and thermal conductivity, thermopower, and shear viscosity, are calculated in the linear response regime. We also extend the formalism to include an external magnetic field. We present results from numerical solutions of the quantum Boltzmann equation. Finally, we derive a simplified two-fluid hydrodynamic model appropriate for this system, which reproduces the salient results of the full numerical calculations.
引用
收藏
页数:24
相关论文
共 46 条
[1]  
[Anonymous], arXiv:1306.0638
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Negative local resistance caused by viscous electron backflow in graphene [J].
Bandurin, D. A. ;
Torre, I. ;
Kumar, R. Krishna ;
Ben Shalom, M. ;
Tomadin, A. ;
Principi, A. ;
Auton, G. H. ;
Khestanova, E. ;
Novoselov, K. S. ;
Grigorieva, I. V. ;
Ponomarenko, L. A. ;
Geim, A. K. ;
Polini, M. .
SCIENCE, 2016, 351 (6277) :1055-1058
[4]   Measuring Hall viscosity of graphene's electron fluid [J].
Berdyugin, A. I. ;
Xu, S. G. ;
Pellegrino, F. M. D. ;
Kumar, R. Krishna ;
Principi, A. ;
Torre, I. ;
Ben Shalom, M. ;
Taniguchi, T. ;
Watanabe, K. ;
Grigorieva, I. V. ;
Polini, M. ;
Geim, A. K. ;
Bandurin, D. A. .
SCIENCE, 2019, 364 (6436) :163-+
[5]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Shear viscosity in a non-Fermi-liquid phase of a quadratic semimetal [J].
Dumitrescu, Philipp T. .
PHYSICAL REVIEW B, 2015, 92 (12)
[8]   On the quantum Boltzmann equation [J].
Erdös, L ;
Salmhofer, M ;
Yau, HT .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :367-380
[9]   Broken-symmetry states and divergent resistance in suspended bilayer graphene [J].
Feldman, Benjamin E. ;
Martin, Jens ;
Yacoby, Amir .
NATURE PHYSICS, 2009, 5 (12) :889-893
[10]   Spontaneously Gapped Ground State in Suspended Bilayer Graphene [J].
Freitag, F. ;
Trbovic, J. ;
Weiss, M. ;
Schoenenberger, C. .
PHYSICAL REVIEW LETTERS, 2012, 108 (06)