Lp adaptive density estimation in a β mixing framework

被引:18
作者
Tribouley, K [1 ]
Viennet, G [1 ]
机构
[1] Univ Paris Sud, Lab Modelisat Stochast & Stat, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 1998年 / 34卷 / 02期
关键词
adaptive estimation; absolutely regular variables; Besov spaces; density estimation; strictly stationary sequences; wavelet orthonormal basis;
D O I
10.1016/S0246-0203(98)80029-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the L-pi-integrated risk with pi greater than or equal to 2 of an adaptive density estimator by wavelets method for absolutely regular observations. By a duality argument, the study of the risk is linked to the control of the supremum of the empirical process over a suitable class of functions. The main argument is a generalization to absolutely regular variables of a result of Talagrand stated for i.i.d. variables. Assuming that the sequence of the beta-mixing coefficients (beta(l))(l greater than or equal to 0) is arithmetically decreasing, we prove that our estimator is adaptive in a class of Besov spaces with unknown smoothness. (C) Elsevier, Paris.
引用
收藏
页码:179 / 208
页数:30
相关论文
共 23 条
[1]  
BERBEE HCP, 1979, CENT MATH TRACTS
[2]   RATES OF CONVERGENCE FOR MINIMUM CONTRAST ESTIMATORS [J].
BIRGE, L ;
MASSART, P .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 97 (1-2) :113-150
[3]  
BIRGE L, 1995, PREPUBLICATION U PAR, V9541
[4]  
DALHAUS R, 1995, WIAS, V159
[5]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[6]  
Donoho DL, 1996, ANN STAT, V24, P508
[7]  
DOUKHAN P, 1994, ANN I H POINCARE-PR, V30, P63
[8]  
DOUKHAN P, 1994, LECT NOTES STAT, V72
[9]  
EFROIMOVICH SY, 1984, AUTOMAT REM CONTR+, V45, P1434
[10]   NONPARAMETRIC-ESTIMATION OF A DENSITY OF UNKNOWN SMOOTHNESS [J].
EFROIMOVICH, SY .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1986, 30 (03) :557-568