Phase-controlled phonon laser

被引:26
作者
Zhang, Yan-Lei [1 ,2 ]
Zou, Chang-Ling [1 ,2 ,3 ]
Yang, Chuan-Sheng [1 ,2 ]
Jing, Hui [4 ,5 ]
Dong, Chun-Hua [1 ,2 ]
Guo, Guang-Can [1 ,2 ]
Zou, Xu-Bo [1 ,2 ]
机构
[1] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Anhui, Peoples R China
[3] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[4] Hunan Normal Univ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Dept Phys, Minist Educ, Changsha 410081, Hunan, Peoples R China
[5] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
cavity optomechanics; strong-coupling; phonon laser; ultralow-threshold; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; WHISPERING-GALLERY MICROCAVITIES; QUANTUM GROUND-STATE; MECHANICAL RESONATOR; SIDE-BAND; MICROMECHANICAL RESONATOR; NANOMECHANICAL RESONATOR; CAVITY OPTOMECHANICS; SQUEEZED-LIGHT; MOTION;
D O I
10.1088/1367-2630/aadc9f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A phase-controlled ultralow-threshold phonon laser is proposed by using tunable optical amplifiers in coupled-cavity-optomechanical system. The multiplicative behavior of the individual enhancements, by engineering the phases and strengths of external parametric driving, makes it possible to achieve the strong-coupling regime of optomechanics, where the switching among radiation-pressure, parametric amplification, and three-mode optomechanical couplings can be realized and ultralow-threshold phonon lasing is observable. This opens up novel prospects for applications in, e.g. quantum acoustics, nonlinear phonon devices, and ultrasensitive motion sensing.
引用
收藏
页数:13
相关论文
共 92 条
[1]   Nondegenerate three-wave mixing with the Josephson ring modulator [J].
Abdo, Baleegh ;
Kamal, Archana ;
Devoret, Michel .
PHYSICAL REVIEW B, 2013, 87 (01)
[2]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[3]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[4]   Quantum optomechanics [J].
Aspelmeyer, Markus ;
Meystre, Pierre ;
Schwab, Keith .
PHYSICS TODAY, 2012, 65 (07) :29-35
[5]   Counter-polarized single-photon generation from the auxiliary cavity of a weakly nonlinear photonic molecule [J].
Bamba, Motoaki ;
Ciuti, Cristiano .
APPLIED PHYSICS LETTERS, 2011, 99 (17)
[6]   Optomechanical trapping and cooling of partially reflective mirrors [J].
Bhattacharya, M. ;
Uys, H. ;
Meystre, P. .
PHYSICAL REVIEW A, 2008, 77 (03)
[7]   Signatures of Nonlinear Cavity Optomechanics in the Weak Coupling Regime [J].
Borkje, K. ;
Nunnenkamp, A. ;
Teufel, J. D. ;
Girvin, S. M. .
PHYSICAL REVIEW LETTERS, 2013, 111 (05)
[8]   Macroscopic quantum mechanics: theory and experimental concepts of optomechanics [J].
Chen, Yanbei .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[9]   Amplified Optomechanical Transduction of Virtual Radiation Pressure [J].
Cirio, Mauro ;
Debnath, Kamanasish ;
Lambert, Neill ;
Nori, Franco .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[10]   Sideband cooling beyond the quantum backaction limit with squeezed light [J].
Clark, Jeremy B. ;
Lecocq, Florent ;
Simmonds, Raymond W. ;
Aumentado, Jose ;
Teufel, John D. .
NATURE, 2017, 541 (7636) :191-+