Large gain in air quality compared to an alternative anthropogenic emissions scenario

被引:21
作者
Daskalakis, Nikos [1 ,2 ,5 ]
Tsigaridis, Kostas [3 ,4 ]
Myriokefalitakis, Stelios [1 ]
Fanourgakis, George S. [1 ]
Kanakidou, Maria [1 ]
机构
[1] Univ Crete, Dept Chem, Environm Chem Proc Lab, POB 2208, Iraklion 70013, Greece
[2] Fdn Res & Technol Hellas FORTH ICE HT, Inst Chem Engn, Patras 26504, Greece
[3] Columbia Univ, Ctr Climate Syst Res, New York, NY 10025 USA
[4] NASA, Goddard Inst Space Studies, 2880 Broadway, New York, NY 10025 USA
[5] UPMC UVSQ CNRS, Observat Spatiales, Milieux, LATMOS,Lab Atmospheres, Paris, France
基金
欧盟第七框架计划;
关键词
TROPOSPHERIC OZONE; CARBON-MONOXIDE; AEROSOL TRENDS; MODEL; VARIABILITY; REANALYSIS; TRANSPORT; CHEMISTRY; LEVEL;
D O I
10.5194/acp-16-9771-2016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the year-to- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.
引用
收藏
页码:9771 / 9784
页数:14
相关论文
共 59 条
[1]   Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage [J].
Avnery, Shiri ;
Mauzerall, Denise L. ;
Liu, Junfeng ;
Horowitz, Larry W. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) :2284-2296
[2]   ATMOSPHERIC SCIENCE Dirtier air from a weaker monsoon [J].
Chin, Mian .
NATURE GEOSCIENCE, 2012, 5 (07) :449-450
[3]   Forty years of improvements in European air quality: regional policy-industry interactions with global impacts [J].
Crippa, Monica ;
Janssens-Maenhout, Greet ;
Dentener, Frank ;
Guizzardi, Diego ;
Sindelarova, Katerina ;
Muntean, Marilena ;
Van Dingenen, Rita ;
Granier, Claire .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (06) :3825-3841
[4]   Sensitivity of tropospheric loads and lifetimes of short lived pollutants to fire emissions [J].
Daskalakis, N. ;
Myriokefalitakis, S. ;
Kanakidou, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (06) :3543-3563
[5]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[6]   Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom [J].
Dentener, F. ;
Kinne, S. ;
Bond, T. ;
Boucher, O. ;
Cofala, J. ;
Generoso, S. ;
Ginoux, P. ;
Gong, S. ;
Hoelzemann, J. J. ;
Ito, A. ;
Marelli, L. ;
Penner, J. E. ;
Putaud, J. -P. ;
Textor, C. ;
Schulz, M. ;
van der Werf, G. R. ;
Wilson, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :4321-4344
[7]   Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations [J].
Dentener, F ;
van Weele, M ;
Krol, M ;
Houweling, S ;
van Velthoven, P .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2003, 3 :73-88
[8]   Global tropospheric ozone variations from 2003 to 2011 as seen by SCIAMACHY [J].
Ebojie, F. ;
Burrows, J. P. ;
Gebhardt, C. ;
Ladstaetter-Weissenmayer, A. ;
von Savigny, C. ;
Rozanov, A. ;
Weber, M. ;
Bovensmann, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (02) :417-436
[9]   Global air quality and climate [J].
Fiore, Arlene M. ;
Naik, Vaishali ;
Spracklen, Dominick V. ;
Steiner, Allison ;
Unger, Nadine ;
Prather, Michael ;
Bergmann, Dan ;
Cameron-Smith, Philip J. ;
Cionni, Irene ;
Collins, William J. ;
Dalsoren, Stig ;
Eyring, Veronika ;
Folberth, Gerd A. ;
Ginoux, Paul ;
Horowitz, Larry W. ;
Josse, Beatrice ;
Lamarque, Jean-Francois ;
MacKenzie, Ian A. ;
Nagashima, Tatsuya ;
O'Connor, Fiona M. ;
Righi, Mattia ;
Rumbold, Steven T. ;
Shindell, Drew T. ;
Skeie, Ragnhild B. ;
Sudo, Kengo ;
Szopa, Sophie ;
Takemura, Toshihiko ;
Zeng, Guang .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (19) :6663-6683
[10]   ISORROPIA II:: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-Nh4+-Na+-SO42--NO3--Cl--H2O aerosols [J].
Fountoukis, C. ;
Nenes, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (17) :4639-4659