Ligand-free ZnS nanoparticles: as easy and green as it gets

被引:10
|
作者
Dengo, Nicola [1 ,2 ]
Faresin, Andrea [1 ,2 ]
Carofiglio, Tommaso [1 ,2 ]
Maggini, Michele [1 ,2 ]
Wu, Longfei [3 ]
Hofmann, Jan P. [3 ]
Hensen, Emiel J. M. [3 ]
Dolcet, Paolo [1 ,2 ,4 ]
Gross, Silvia [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Sci Chim, Via Marzolo 1, I-35131 Padua, Italy
[2] INSTM UdR, Via Marzolo 1, I-35131 Padua, Italy
[3] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Inorgan Mat & Catalysis, POB 513, NL-5600 MB Eindhoven, Netherlands
[4] Karlsruher Inst Technol KIT, Inst Tech Chem & Polymerchem ITCP, Engesserstr 20, D-76131 Karlsruhe, Germany
关键词
GROWTH; NUCLEATION; PHOTOCATALYSTS; PH;
D O I
10.1039/d0cc01901a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The controlled nucleation and crystallization of small pure sphalerite ZnS nanoparticles was achieved under batch and continuous flow conditions at low temperature, in water and without the use of any stabilizing ligand. The obtained nanoparticles displayed a narrow size distribution and high specific surface area. Moreover, the synthesis was suitable to directly obtain stable water-based suspensions and the products were found to be active photocatalysts for the hydrogen evolution reaction.
引用
收藏
页码:8707 / 8710
页数:4
相关论文
共 50 条
  • [1] Electronic and magnetic properties of ligand-free FePt nanoparticles
    Boyen, HG
    Fauth, K
    Stahl, B
    Ziemann, P
    Kästle, G
    Weigl, F
    Banhart, F
    Hessler, M
    Schütz, G
    Gajbhiye, NS
    Ellrich, J
    Hahn, H
    Büttner, M
    Garnier, MG
    Oelhafen, P
    ADVANCED MATERIALS, 2005, 17 (05) : 574 - +
  • [2] An efficient synthetic strategy for ligand-free upconversion nanoparticles
    Sun, Chunning
    Simke, Jan Ron Justin
    Gradzielski, Michael
    MATERIALS ADVANCES, 2020, 1 (06): : 1602 - 1607
  • [3] Magnetic Nanoparticles as Mediators of Ligand-Free Activation of EGFR Signaling
    Bharde, Atul A.
    Palankar, Raghavendra
    Fritsch, Cornelia
    Klaver, Arjen
    Kanger, Johannes S.
    Jovin, Thomas M.
    Arndt-Jovin, Donna J.
    PLOS ONE, 2013, 8 (07):
  • [4] Laser synthesis of ligand-free bimetallic nanoparticles for plasmonic applications
    Intartaglia, R.
    Das, G.
    Bagga, K.
    Gopalakrishnan, A.
    Genovese, A.
    Povia, M.
    Di Fabrizio, E.
    Cingolani, R.
    Diaspro, A.
    Brandi, F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (09) : 3075 - 3082
  • [5] Facile Synthesis of Ligand-Free Iridium Nanoparticles and Their In Vitro Biocompatibility
    Anna L. Brown
    Hayden Winter
    Andrea M. Goforth
    Gaurav Sahay
    Conroy Sun
    Nanoscale Research Letters, 2018, 13
  • [6] Facile Synthesis of Ligand-Free Iridium Nanoparticles and Their In Vitro Biocompatibility
    Brown, Anna L.
    Winter, Hayden
    Goforth, Andrea M.
    Sahay, Gaurav
    Sun, Conroy
    NANOSCALE RESEARCH LETTERS, 2018, 13
  • [7] Electrodeposition of ligand-free copper nanoparticles from aqueous nanodroplets
    Tarolla, Nicole E.
    Voci, Silvia
    Reyes-Morales, Joshua
    Pendergast, Andrew D.
    Dick, Jeffrey E.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 20048 - 20057
  • [8] Sulfur copolymer for the direct synthesis of ligand-free CdS nanoparticles
    Martin, Trevor R.
    Mazzio, Katherine A.
    Hillhouse, Hugh W.
    Luscombe, Christine K.
    CHEMICAL COMMUNICATIONS, 2015, 51 (56) : 11244 - 11247
  • [9] Green and ligand-free gold nanoparticles in Padina australis extract for colorimetric detection of Cu2+in water
    Wu, Lihua
    Huang, Gangan
    Xie, Ting
    Zhang, Anran
    Fu, Yunzhi
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2023, 658
  • [10] Ligand-Free Yolk-Shell Nanoparticles: Synthesis and Catalytic Applications
    Shaik, Firdoz
    CHEMNANOMAT, 2020, 6 (10) : 1449 - 1473