Matched asymptotic solution to a class of singularly perturbed thin plate bending problem

被引:2
|
作者
Xu Hui [2 ]
Chen Li-Hua [3 ]
Mo Jia-Qi [1 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241003, Peoples R China
[2] Anhui Univ Finance & Econ, Sch Stat & Appl Math, Bengbu 233030, Peoples R China
[3] Fujian Normal Univ, Fuqing Branch, Dept Math & Comp Sci, Fuqing 350300, Peoples R China
基金
中国国家自然科学基金;
关键词
thin plate bend; deflexion; asymptotic solution;
D O I
10.7498/aps.60.100201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The thin plate-bending problem is studied. Introducing the stretched variables, the internal layer solutions near the boundary are constructed for the fourth order singularly perturbed boundary problem. Then matching the solutions with outer solution and using the theory of the composite expansion, the asymptotic solution is obtained finally.
引用
收藏
页数:6
相关论文
共 12 条
  • [1] Alzheimer W.E., 1968, J. Eng. Mech. Div., V94, P905
  • [2] SINGULAR PERTURBATION PROBLEMS FOR LINEAR ELLIPTIC DIFFERENTIAL OPERATORS OF ARBITRARY ORDER .1. DEGENERATION TO ELLIPTIC OPERATORS
    BESJES, JG
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 49 (01) : 24 - 46
  • [3] Leach J., 2004, SPRINGER MG MATH, DOI 10.1007/978-0-85729-396-1
  • [4] Luminita B, 2007, SINGULARLY PERTURBED
  • [5] Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation
    Mo Jia-Qi
    Chen Xian-Feng
    [J]. CHINESE PHYSICS B, 2010, 19 (10)
  • [6] Homotopic mapping solving method of the reduces equation for Kelvin waves
    Mo Jia-Qi
    Lin Yi-Hua
    Lin Wan-Tao
    [J]. CHINESE PHYSICS B, 2010, 19 (03)
  • [7] Mo JQ, 2010, CHINESE PHYS B, V19
  • [8] Mo JQ, 1981, APPL MATH MECH, V2, P567
  • [9] Nayfeh A.H., 1981, Introduction to Perturbation Techniques
  • [10] Timoshenk S, 1959, THEORY PLATES SHELLS