In -situ Raman spectroscopy: An effective technique for the quantification of LCST transition of methylcellulose hydrogels

被引:11
作者
Bonetti, Lorenzo [1 ]
De Nardo, Luigi [1 ,2 ]
Variola, Fabio [3 ]
Fare, Silvia [1 ,2 ]
机构
[1] Politecn Milan, Chem Mat & Chem Engn G Natta Dept, I-20131 Milan, Italy
[2] Natl Interuniv Consortium Mat Sci & Technol, INSTM, I-50121 Florence, Italy
[3] Univ Ottawa, Mech Engn Dept, Ottawa, ON K1N 6N5, Canada
关键词
PHASE-SEPARATION;
D O I
10.1016/j.matlet.2020.128011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In-situ Raman spectroscopy was employed to investigate the thermo-responsive sol-gel transition of methylcellulose (MC) based hydrogels at their lower critical solution temperature (LCST). By comparing the Raman signature of dry and wet MC samples, C-Hx bands in the 2700–3100 cm−1 range (associated with vibrations of CH3 bonds) were found to respond to the hydration level of MC. In particular, the intensity of the C-Hx peaks of wet samples was demonstrated to depend on temperature variations (25–50 °C). Data fitting allowed to identify the LCST (~39 °C), thereby disclosing the potential of Raman spectroscopy for the precise quantification of the thermo-responsive behavior of MC hydrogels. © 2020 Elsevier B.V.
引用
收藏
页数:3
相关论文
共 13 条
  • [1] Adar F., 2012, SPECTROSC SANTA MONI, V27
  • [2] Adar F, 2016, SPECTROSCOPY-US, V31, P22
  • [3] Biopolymer-based strategies in the design of smart medical devices and artificial organs
    Altomare, Lina
    Bonetti, Lorenzo
    Campiglio, Chiara E.
    De Nardo, Luigi
    Draghi, Lorenza
    Tana, Francesca
    Fare, Silvia
    [J]. INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2018, 41 (06) : 337 - 359
  • [4] Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication
    Altomare, Lina
    Cochis, Andrea
    Carletta, Andrea
    Rimondini, Lia
    Fare, Silvia
    [J]. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2016, 27 (05)
  • [5] Phase separation of aqueous solution of methylcellulose
    Chevillard, C
    Axelos, MAV
    [J]. COLLOID AND POLYMER SCIENCE, 1997, 275 (06) : 537 - 545
  • [6] 3D Printing of Thermo-Responsive Methylcellulose Hydrogels for Cell-Sheet Engineering
    Cochis, Andrea
    Bonetti, Lorenzo
    Sorrentino, Rita
    Negrini, Nicola Contessi
    Grassi, Federico
    Leigheb, Massimiliano
    Rimondini, Lia
    Fare, Silvia
    [J]. MATERIALS, 2018, 11 (04)
  • [7] THERMOGELATION OF METHYLCELLULOSE .1. MOLECULAR-STRUCTURES AND PROCESSES
    HAQUE, A
    MORRIS, ER
    [J]. CARBOHYDRATE POLYMERS, 1993, 22 (03) : 161 - 173
  • [8] Mander L., 2010, Comprehensive Natural Products II: Chemistry and Biology, Comprehensive Natural Products II: Chemistry and Biology, DOI DOI 10.1016/C2009-1-28362-6
  • [9] Methylcellulose, a Cellulose Derivative with Original Physical Properties and Extended Applications
    Nasatto, Pauline L.
    Pignon, Frederic
    Silveira, Joana L. M.
    Duarte, Maria Eugenia R.
    Noseda, Miguel D.
    Rinaudo, Marguerite
    [J]. POLYMERS, 2015, 7 (05) : 777 - 803
  • [10] Raman spectroscopy study on influence of network architecture on hydration of poly(2-(2-methoxyethoxy) ethyl methacrylate) hydrogels
    Olejniczak, Magdalena N.
    Kozanecki, Marcin
    Saramak, Jakub
    Matusiak, Malgorzata
    Kadlubowski, Slawomir
    Matyjaszewski, Krzysztof
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2017, 48 (03) : 465 - 473