Some results connected with the class number problem in real quadratic fields

被引:0
作者
Grytczuk, A [1 ]
Grytczuk, J
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65516 Zielona Gora, Poland
[2] Univ Zielona Gora, Inst Math, PL-65516 Zielona Gora, Poland
关键词
the class number; real quadratic field;
D O I
10.1007/s10114-005-0544-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate arithmetic properties of certain subsets of square-free positive integers and obtain in this way some results concerning the class number h(d) of the real quadratic field Q(v d). In particular, we give a new proof of the result of Hasse, asserting that in this case h(d) = 1 is possible only if d is of the form p, 2q or qr, where p, q, r are primes and q = r = 3(mod 4).
引用
收藏
页码:1107 / 1112
页数:6
相关论文
共 50 条
[31]   On the class number of the maximal real subfields of a family of cyclotomic fields [J].
Ram, Mahesh Kumar .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (03) :937-940
[32]   On the class number of the maximal real subfields of a family of cyclotomic fields [J].
Mahesh Kumar Ram .
Czechoslovak Mathematical Journal, 2023, 73 :937-940
[33]   On a certain invariant for real quadratic fields [J].
Lee, SM ;
Ono, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2003, 79 (08) :119-122
[34]   On the rank of the 2-class group of some imaginary triquadratic number fields [J].
Abdelmalek Azizi ;
Mohamed Mahmoud Chems-Eddin ;
Abdelkader Zekhnini .
Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 :1751-1769
[35]   On the rank of the 2-class group of some imaginary triquadratic number fields [J].
Azizi, Abdelmalek ;
Chems-Eddin, Mohamed Mahmoud ;
Zekhnini, Abdelkader .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (03) :1751-1769
[36]   An analogue of the Dedekind-Rademacher sum and certain ray class invariants of real quadratic fields [J].
Onodera, Kazuhiro .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :1907-1931
[37]   ON KRONECKER LIMIT FORMULA FOR REAL QUADRATIC FIELDS (Ⅱ) [J].
陆洪文 ;
张明尧 .
Science China Mathematics, 1989, (12) :1409-1422
[38]   Modification of Cohen-Lenstra heuristics for ideal class groups and numbers of certain real quadratic fields [J].
L.C.Washington .
Chinese Science Bulletin, 1997, (23) :1959-1962
[39]   Modification of Cohen-Lenstra heuristics for ideal class groups and numbers of certain real quadratic fields [J].
Washington, LC ;
Zhang, XK .
CHINESE SCIENCE BULLETIN, 1997, 42 (23) :1959-1962
[40]   Real Quadratic Fields and the Ankeny–Artin–Chowla Conjecture [J].
I. Sh. Slavutskii .
Journal of Mathematical Sciences, 2004, 122 (6) :3673-3678