Exact phase solutions of nonlinear oscillators on two-dimensional lattice

被引:2
|
作者
Yokoi, T [1 ]
Yamada, H [1 ]
Nozaki, K [1 ]
机构
[1] Nagoya Univ, Dept Phys, Nagoya, Aichi 464, Japan
关键词
complex Ginzburg-Landau equation; square lattice; spiral; target; Hopf bifurcation;
D O I
10.1143/JPSJ.73.358
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present various exact solutions of a discrete complex Ginzburg-Landau (CGL) equation on a plane lattice, which describe target patterns and spiral patterns and derive their stability criteria. We also obtain similar solutions to a system of van der Pol's oscillators.
引用
收藏
页码:358 / 363
页数:6
相关论文
共 50 条
  • [31] Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrodinger equation with distributed coefficients
    Zhong, Wei-Ping
    Xie, Rui-Hua
    Belic, Milivoj
    Petrovic, Nikola
    Chen, Goong
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [32] Constructing exact solutions for two-dimensional nonlinear dispersion Boussinesq equation. II: Solitary pattern solutions
    Yan, ZY
    CHAOS SOLITONS & FRACTALS, 2003, 18 (04) : 869 - 880
  • [33] Exact Solutions and Light Bullet Soliton Solutions of the Two-Dimensional Generalized Nonlinear Schrodinger Equation with Distributed Coefficients
    Huang, W. -H.
    Mu, C. -F.
    Xu, Y.
    Ding, B. -G.
    ACTA PHYSICA POLONICA A, 2013, 124 (04) : 622 - 625
  • [34] Delay-induced patterns in a two-dimensional lattice of coupled oscillators
    Markus Kantner
    Eckehard Schöll
    Serhiy Yanchuk
    Scientific Reports, 5
  • [35] Nonlinear compressional waves in a two-dimensional Yukawa lattice
    Avinash, K
    Zhu, P
    Nosenko, V
    Goree, J
    PHYSICAL REVIEW E, 2003, 68 (04):
  • [36] Propagation of solitons in a two-dimensional nonlinear square lattice
    Zaera, Ramon
    Vila, Javier
    Fernandez-Saez, Jose
    Ruzzene, Massimo
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 106 : 188 - 204
  • [37] Exact compact breather-like solutions of two-dimensional Fermi-Pasta-Ulam lattice
    Sarkar, R
    Dey, B
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (04): : L99 - L104
  • [38] A class of solutions of the two-dimensional Toda lattice equation
    Duarte, V. N.
    PHYSICS LETTERS A, 2021, 385
  • [39] Series of new solutions of the two-dimensional toda lattice
    Yuasa, Fukuko
    Takizawa, Ei Iti
    Bulletin of the Faculty of Engineering, Yokohama National University, 1988, 37 : 1 - 13
  • [40] A note on Casoratian solutions to two-dimensional Toda lattice
    Zhang Da-Jun
    Wu Hua
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 47 (03) : 390 - 392