Phase-field modeling and electronic structural analysis of flexoelectric effect at 180° domain walls in ferroelectric PbTiO3

被引:18
作者
Wang, Yu-Jia [1 ]
Li, Jiangyu [2 ,3 ]
Zhu, Yin-Lian [1 ]
Ma, Xiu-Liang [1 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
[2] Chinese Acad Sci, Univ Town Shenzhen, Shenzhen Inst Adv Technol, Shenzhen Key Lab Nanobiomech, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Washington, Dept Mech Engn, Seattle, WA 98195 USA
[4] Lanzhou Univ Technol, Sch Mat Sci & Engn, Langongping Rd 287, Lanzhou 730050, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
POLARIZATION; CONDUCTION; STABILITY;
D O I
10.1063/1.5017219
中图分类号
O59 [应用物理学];
学科分类号
摘要
The flexoelectric effect is the coupling between strain, polarization, and their gradients, which are prominent at the nanoscale. Although this effect is important to understand nanostructures, such as domain walls in ferroelectrics, its electronic mechanism is not clear. In this work, we combined phase-field simulations and first-principles calculations to study the 180 degrees domain walls in tetragonal ferroelectric PbTiO3 and found that the source of Neel components is the gradient of the square of spontaneous polarization. Electronic structural analysis reveals that there is a redistribution of electronic charge density and potential around domain walls, which produces the electric field and Neel components. This work thus sheds light on the electronic mechanism of the flexoelectric effect around 180 degrees domain walls in tetragonal ferroelectrics. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 37 条
  • [1] Structure and energetics of 180° domain walls in PbTiO3 by density functional theory
    Behera, Rakesh K.
    Lee, Chan-Woo
    Lee, Donghwa
    Morozovska, Anna N.
    Sinnott, Susan B.
    Asthagiri, Aravind
    Gopalan, Venkatraman
    Phillpot, Simon R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (17)
  • [2] Bhaskar UK, 2016, NAT NANOTECHNOL, V11, P263, DOI [10.1038/nnano.2015.260, 10.1038/NNANO.2015.260]
  • [3] Biancoli A, 2015, NAT MATER, V14, P224, DOI [10.1038/nmat4139, 10.1038/NMAT4139]
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Atomic-scale evolution of modulated phases at the ferroelectric-antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction
    Borisevich, A. Y.
    Eliseev, E. A.
    Morozovska, A. N.
    Cheng, C. -J.
    Lin, J. -Y.
    Chu, Y. H.
    Kan, D.
    Takeuchi, I.
    Nagarajan, V.
    Kalinin, S. V.
    [J]. NATURE COMMUNICATIONS, 2012, 3
  • [6] Catalan G, 2011, NAT MATER, V10, P963, DOI [10.1038/nmat3141, 10.1038/NMAT3141]
  • [7] Revealing the flexoelectricity in the mixed-phase regions of epitaxial BiFeO3 thin films
    Cheng, Cheng-En
    Liu, Heng-Jui
    Dinelli, Franco
    Chen, Yi-Chun
    Chang, Chen-Shiung
    Chien, Forest Shih-Sen
    Chu, Ying-Hao
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [8] Chu K, 2015, NAT NANOTECHNOL, V10, P972, DOI [10.1038/nnano.2015.191, 10.1038/NNANO.2015.191]
  • [9] Domain wall conduction in multiaxial ferroelectrics
    Eliseev, Eugene A.
    Morozovska, Anna N.
    Svechnikov, George S.
    Maksymovych, Peter
    Kalinin, Sergei V.
    [J]. PHYSICAL REVIEW B, 2012, 85 (04)
  • [10] Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity
    Gu, Yijia
    Hong, Zijian
    Britson, Jason
    Chen, Long-Qing
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (02)