Adaptive mesh enrichment for the Poisson-Boltzmann equation

被引:23
作者
Dyshlovenko, P [1 ]
机构
[1] Ulyanovsk State Tech Univ, Dept Phys, Ulyanovsk 432027, Russia
关键词
adaptive mesh refinement; mesh enrichment; Delaunay triangulation; finite-element method; Poisson-Boltzmann equation; colloidal particles interaction;
D O I
10.1006/jcph.2001.6820
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An adaptive mesh enrichment procedure for a finite-element solution of the two-dimensional Poisson-Boltzmann equation is described. The mesh adaptation is performed by subdividing the cells using information obtained in the previous step of the solution and next rearranging the mesh to be a Delaunay triangulation. The procedure allows the gradual improvement of the quality of the solution and adjustment of the geometry of the problem. The performance of the proposed approach is illustrated by applying it to the problem of two identical colloidal particles in a symmetric electrolyte. (C) 2001 Academic Press.
引用
收藏
页码:198 / 208
页数:11
相关论文
共 50 条
[41]   A Numerical Method for Poisson-Boltzmann Equation Using the Lambert W Function [J].
Yoon, Nam-Sik .
APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2023, 32 (03) :69-72
[42]   Discontinuous Bubble Immersed Finite Element Method for Poisson-Boltzmann Equation [J].
Kwon, In ;
Kwak, Do Y. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 25 (03) :928-946
[43]   Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications [J].
Lu, B. Z. ;
Zhou, Y. C. ;
Holst, M. J. ;
McCammon, J. A. .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2008, 3 (05) :973-1009
[44]   Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation [J].
Burak Aksoylu ;
Stephen D. Bond ;
Eric C. Cyr ;
Michael Holst .
Journal of Scientific Computing, 2012, 52 :202-225
[45]   Application of the homotopy analysis method to the Poisson-Boltzmann equation for semiconductor devices [J].
Nassar, Christopher J. ;
Revelli, Joseph F. ;
Bowman, Robert J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (06) :2501-2512
[46]   Goal-Oriented Adaptivity and Multilevel Preconditioning for the Poisson-Boltzmann Equation [J].
Aksoylu, Burak ;
Bond, Stephen D. ;
Cyr, Eric C. ;
Holst, Michael .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (01) :202-225
[47]   Lattice evolution solution for the nonlinear Poisson-Boltzmann equation in confined domains [J].
Wang, Jinku ;
Wang, Moran ;
Li, Zhixin .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (03) :575-583
[48]   Features of CPB: A Poisson-Boltzmann Solver that Uses an Adaptive Cartesian Grid [J].
Fenley, Marcia O. ;
Harris, Robert C. ;
Mackoy, Travis ;
Boschitsch, Alexander H. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (04) :235-243
[49]   Mathematical and Numerical Aspects of the Adaptive Fast Multipole Poisson-Boltzmann Solver [J].
Zhang, Bo ;
Lu, Benzhuo ;
Cheng, Xiaolin ;
Huang, Jingfang ;
Pitsianis, Nikos P. ;
Sun, Xiaobai ;
McCammon, J. Andrew .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (01) :107-128
[50]   PBCAVE: Program for exact classification of the mesh points of a protein with possible internal cavities and its application to Poisson-Boltzmann equation solution [J].
Busa, Jan, Jr. ;
Ayryan, Edik ;
Hayryan, Shura ;
Hu, Chin-Kun ;
Pokorny, Imrich ;
Skrivanek, Jaroslav .
COMPUTER PHYSICS COMMUNICATIONS, 2020, 250