共 50 条
EFFECTS OF RESISTANCE EXERCISE INTENSITY ON EXTRACELLULAR SIGNAL-REGULATED KINASE 1/2 MITOGEN-ACTIVATED PROTEIN KINASE ACTIVATION IN MEN
被引:28
|作者:
Taylor, Lem W.
[3
]
Wilborn, Colin D.
[3
]
Kreider, Richard B.
[4
]
Willoughby, Darryn S.
[1
,2
]
机构:
[1] Baylor Univ, Dept Hlth Human Performance & Recreat, Exercise & Biochem Nutr Lab, Waco, TX 76798 USA
[2] Baylor Univ, Inst Biomed Studies, Waco, TX 76798 USA
[3] Univ Mary Hardin Baylor, Dept Exercise & Sport Sci, Human Performance Lab, Belton, TX USA
[4] Texas A&M Univ, Dept Hlth & Kinesiol, Exercise & Sport Nutr Lab, College Stn, TX USA
关键词:
ERK pathway;
signal transduction;
hypertrophy;
HUMAN SKELETAL-MUSCLE;
IGF-I;
RESPONSES;
EXPRESSION;
TRANSDUCTION;
MECHANISMS;
PHOSPHORYLATION;
P70(S6K);
ERK1/2;
MTOR;
D O I:
10.1519/JSC.0b013e318242f92d
中图分类号:
G8 [体育];
学科分类号:
04 ;
0403 ;
摘要:
Taylor, LW, Wilborn, CD, Kreider, RB, and Willoughby, DS. Effects of resistance exercise intensity on extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase activation in men. J Strength Cond Res 26(3): 599-607, 2012-Extracellular signal-regulated kinase (ERK) 1/2 signaling has been shown to be increased after heavy resistance exercise and suggested to play a role in the hypertrophic adaptations that are known to occur with training. However, the role that ERK1/2 may play in response to lower intensities of resistance exercise is unknown. Therefore, the purpose of this study was to determine the effects of resistance exercise intensity on ERK1/2 activity in human skeletal muscle. Twelve recreationally active men completed separate bouts of single-legged resistance exercise with 8-10 repetitions (reps) at 80-85% 1 repetition maximum (1RM) (85%) and 18-20 reps at 60-65% 1RM (65%) in a randomized crossover fashion. For both resistance exercise sessions, vastus lateralis biopsies and blood draws were taken immediately before exercise (PRE) and at 30 minutes (30MPST), 2 hours (2HRPST), and 6 hours (6HRPST) post exercise, with an additional blood draw occurring immediately after exercise (POST). The phosphorylated levels of pIGF-1R, pMEK1, pERK1/2, and activated Elk-1 were assessed by phosphoELISA, and serum insulin-like growth factor 1 (IGF-1) was assessed via enzyme-linked immunosorbent assay. Statistical analyses used a 2 x 4 (muscle responses) and 2 x 5 (serum responses) multivariate analysis of variance on delta values from baseline (p < 0.05). Both exercise intensities significantly increased the activity of insulin-like growth factor 1 receptor (IGF-1R), mitogen-activated protein kinase 1, ERK1/2, and Elk-1, with peak activity occurring at 2HRPST (p < 0.001). However, 65% resulted in a preferential increase in IGF-1R and Elk-1 activation when compared with 85% (p < 0.05). No differences were observed for serum IGF-1 levels regardless of intensity and time. These findings demonstrate that resistance exercise upregulates ERK1/2 signaling in a manner that does not appear to be preferentially dependent on exercise intensity.
引用
收藏
页码:599 / 607
页数:9
相关论文